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Abstract: Research was carried out to explore the effect of pulsed electron beam irradiation on the
behavior of structure and phase state in AISI 310S steel exposed to high-cycle fatigue. A 2.2 times
increase in the fatigue life of samples irradiated by electron beams was revealed. The outcomes of
scanning and transmission electron microscopic studies suggest the most probable reason for the
fracture of steel samples irradiated by a high-intensity electron beam to be microcraters originating on
a treated surface and acting as stress risers initiating the propagation of microcracks. The irradiation
with a pulsed electron beam causes extremely fast melting of the surface. As a result of the subsequent
rapid crystallization, a polycrystalline structure nearly twice as small as an average grain in the
untreated steel is formed. Since a surface layer crystallizes rapidly, crystallization cells ranging from
120 to 170 nm develop in the volume of grains. The fatigue testing is shown to be associated with
a martensite transformation γ⇒ ε in the surface layer. One option to intensify a fatigue life increase
of the steel in focus is supposed to be the neutralization of crater-forming on a surface treated by
electron beams.
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1. Introduction

To date, there is a considerable volume of published studies exploring processes taking place
when fatiguing metallic materials. It is related to a complex influence of numerous factors which cause
the destruction of metals when fatigued. For instance, fatigue fracture of metals and propagation of
fatigue cracks depend on stress levels and rates, surface roughness, heterogeneity of microstructure,
etc. To an extent, all of these factors are relevant for the growth of fatigue cracks [1–6].

Several studies have emphasized the importance of an environmental factor in the propagation
of cracks under fatigue, especially for high-duty products operated in diverse stress conditions [7–9].
To illustrate, Huang et al. [10] analyzed the role of a surface state in S135 steel under a variety of
conditions: smooth samples, notched samples, and notched samples susceptible to H2S corrosion.
The researchers came to a conclusion that cracks in notched and H2S corroded samples occurred in the
early propagation phase; furthermore, a crack originates and grows due to the hydrogen-caused brittle
behavior and fatigue stresses. The H2S corrosion produces a more significant effect on the fatigue
life [10]. The fatigue fracture in SA508 steel is ductile up to the H2S induced corrosion. It turns to be
brittle as a result of the H2S corrosion. A principal effect of the H2S corrosion is that hydrogen atoms
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tend to agglomerate on grain boundaries, impurities, and defects, and give rise to the origination of
fatigue cracks [11].

A number of methods are known to improve a surface state responsible for microcracking [12–16].
The impact of an electron beam on the surface represents one of the future techniques [17]. For example,
a composite nanodimensional structure was developed on a modified surface of the quenched and
tempered 40CrNiMo7 steel when modifying; moreover, a martensite transformation and the dissolution
and destruction of cementite were observed. As a result, the annual corrosion rate dropped from 0.12
to 0.02 mm per year, indicating, therefore, a considerable increase in the corrosion resistance [18].

The investigation on the 5CrMnMo cast steel has established a relation between the roughness
behavior and microhardness of the surface in case a beam current is changed. The wear resistance of
a modified layer is decidedly better than that in the initial state. In addition, a composite microstructure
of needle-shaped and lath types of martensite formed owing to a martensite transformation in the
modified layer [19].

The electron beam treatment of a Co-Cr base resulted in the reorientation of TiN microvolumes
from (111) to (200), and, as a consequence, a three-dimensional growth mode turned into an LBL one.
The process of the electron beam treatment exerts no essential effect on the thickness of coatings and
deposition velocity, but the surface becomes rougher. Furthermore, an outcome of the electron beam
treatment is the decreasing hardness of deposited coatings from 10 to 5 GPa [20].

The irradiation with a pulsed electron beam was used as a method to process the surface of AZ31B
magnesium alloy with the purpose of improving its corrosion and wear resistance. As a result of
selective evaporation of Mg induced by electron beam treatment (energy density—5 J/cm2, 40 cycles),
a re-consolidated and Al-enriched layer formed with a nano-grained structure containing Mg3.1Al0.9

metastable phase. Such a re-consolidated layer forming due to the irradiation made it possible to
reduce the corrosion rate of AZ31B magnesium alloy in 3.5% NaCl solution [21].

Principal transformations in the surface of a TiC–(Ni–Cr) metal–ceramic alloy irradiated with an
electron beam are related to the development of a gradient structure, which improves wear resistance
of the surface, decreases the friction coefficient, and increases the bending strength of a sample if
being irradiated side of the surface is stressed [22]. Such effects, e.g., gradient layers with outstanding
mechanical properties, were reported when studying a combined modification method of a tool steel
surface, which involved electron beam treatment, plasma nitriding, and subsequent electron beam
treatment [23].

The electron beam treatment has an essentially positive effect on the surface roughness of TiN/TiO2

coatings deposited via reactive magnetron sputtering on Ti5Al4V bases. It is reported that there is more
symmetric distribution of heights in comparison with untreated bases [24].

Another important fact is that the electron beam treatment furthers the formation of more refined
grains due to the ultrafast cooling of a melt layer; as a result, wear resistance of tools and their service
life are better. However, this technique suffers from certain limitations because of residual tensile
stresses in the surface layer, which, in turn, might lead to premature failures [25]. On the contrary,
the electron beam treatment of Al-19.4Si titanium alloy and VT1-0 titanium by a high-intensity electron
beam has resulted in a manifold increase in the fatigue life of a material [26,27].

To summarize, the electron beam treatment is a promising method for considerably improving the
surface of metallic materials, which is important for processing metals and alloys exposed to fatiguing.
Therefore, this study aims to explore the structure and phase composition of austenitic AISI 310S steel
irradiated by an intensive pulsed electron beam and find the fracture mechanism when fatigued.

2. Materials and Methods

For the research, AISI 310S austenitic steel was used, and its chemical composition is given
in Table 1. The steel was pretreated thermally via 2 h annealing at a temperature of 1150 ◦C and
cooling in air.
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Table 1. Chemical composition (%) of AISI 310S steel (balanced by Fe).

>C Ni Cr >Si >Mn >P

0.2 17–20 22–25 1 0.02 0.035

Forms and sizes of samples used in fatigue testing were similar to those in studies [26,28] and
are shown in Figure 1. To be precise, they were prepared as a parallelepiped with dimensions of
8 × 14 × 145 mm. The imitation of a crack was carried out by a semicircle notch with a 10 mm radius.
The prior research has established that sizes of samples make no difference for the fatigue life [29].
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Figure 1. Geometry of the cycle fatigue test samples: side and top views.

Before carrying out fatigue tests, samples were irradiated with an intensive pulsed electron
beam, using the “SOLO” laboratory unit (Institute of High Current Electronics Siberian Branch of
the Russian Academy of Sciences). The operation parameters of this unit are thoroughly described
in papers [17,30,31]. Parameters of our experiments are as follows: energy of electrons eV = 18 keV;
density of the electron beam ES (J/cm2) = 20; pulse time τ (µs) = 50; number of pulses n = 3;
pulse repetition frequency f = 0.3 s−1; and pressure of the residual gas (argon) in the processing
chamber of the unit ~0.02 Pa.

A special assembly intended for the asymmetric cantilevered bending was used when fatigue
testing (similar to that described by researchers in [32,33]). Samples were exposed to the cycling
with a frequency of 20 Hz at a stress ratio of R = 0.1 (minimum vs. maximum stress in one cycle
(σ = 86 MPa)). The test temperature was set 300 K. The average number of cycles required for the
fracture was as high as 1.5 × 105. Ten samples were examined in each irradiation mode.

The structure of steel in the as-delivered state and after fatigue tests was explored, using methods of
optical and scanning microscopy and TEM electron diffraction (Philips SEM-515 and JEOL JEM-2100 F).
The technique of TEM electron diffraction was applied to the investigation on layers with the irradiated
surface (layer 1 further in the article) and those ~10 and ~80 µm beneath the side of the sample opposite
to the stress riser and irradiated with the electron beam (layers 2 and 3, respectively).

3. Results and Discussion

3.1. Structure of the As-Delivered AISI 310S Steel

The steel of interest in the work represents a polycrystalline aggregate (Figure 2a). Grains vary
from 11.4 to 88.7 µm. The mean grain size is 41.4 µm. Chaotically distributed and mesh-forming
dislocations surrounded by grains were detected in the study (Figure 2b). The scalar density of
dislocations (≈4 × 1010 cm−2) was determined by using the secant method [34]. A typical element in
the structure of the as-delivered steel is a microtwin (Figure 2c). In most cases, microtwins attributed
to one twining system were found, and, less frequently, they were members of two systems.
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Figure 2. The structure of AISI 310S steel before fatiguing: (a) optical microscopy of an etched
microsection and (b,c) TEM.

The steel under study is a multiphase material. Second-phase particles are detected along grain
boundaries and less frequently in the volume of grains. Particles found along grain boundaries vary
from 40 to 100 nm crosswise and 0.2 to 1.0 µm lengthwise. Particles in the volume of grains tend to be
0.5 µm globules.

3.2. Fatigue Testing Results

Our tests have revealed that the fatigue life of AISI 310S steel depends on electron beam treatment.
In view of the test, specimens irradiated with the electron beam (20 J/cm2, 50 µs, and 3 pulses)
demonstrated the fatigue life 3.3 × 105 cycles (Table 2). Specimens made of as-delivered steel were
destroyed after 1.5 × 105 cycles, i.e., the irradiation of samples with a pulsed electron beam almost
doubled the fatigue life. In light of fatigue testing outcomes, it was focused further only on data
obtained when examining steel processed by pulsed electron beam (20 J/cm2, 50 µs, and 3 pulses).

Table 2. Results of fatigue texts of AISI 310S steel.

Without Electron Beam Irradiation ES = 20 J/cm2; τ = 50 µs

No. of Sample N, Cycles No. of Sample N, Cycles

0101 143,432 2001 321,654

0102 161,313 2002 315,432

0103 150,124 2003 345,981

0104 153,985 2004 341,632

0105 165,409 2005 335,134

0106 143,107 2006 339,754

0107 151,184 2007 312,464

0108 149,643 2008 335,432

0109 151,210 2009 341,247

0110 154,210 2010 330,618

Average value 152,362 Average value 331,935

3.3. Modeling the Temperature Field Developing in the Steel Surface Irradiated with a Pulsed Electron Beam

In the research context, the target represents quite an expanded plane metallic plate with similar
properties; its surface area is comparable to that of a cross-section in the electron beam, whereas it is
far broader than a beam-heated surface of the plate. The current density of the electron beam falling
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normally on the plate surface was assumed to be homogeneous. Owing to these assumptions, it was
possible to use the heat-conductivity equation when searching for the temperature field within a certain
range of energy density values of the electron beam. Rotshtein et al. provided a comprehensive
method for calculating the time-related thermal behavior of a target irradiated with a pulsed electron
beam and illustrated it with examples [35]. When examining the thermal behavior of AISI 310S steel
irradiated with a pulsed electron beam, it was found out that the surface layer (5.7 µm) tends to
melting (one-phase state—liquid), and the lifetime of the molten state is as long as 34 µs, provided that
electron beam parameters are as follows: 20 J/cm2, 50 µs, and 3 pulses. The 6.2 µm layer under it is in
a two-phase state (liquid + solid phases); this state exists for 81 µs. The steel is in the solid state at
a more critical distance from the irradiated surface.

3.4. Modifying the Structure of AISI 310S Steel Surface When Irradiating with a Pulsed Electron Beam

The calculated thermal behavior of steel samples irradiated with a pulsed electron beam (20 J/cm2,
50 µs, and 3 pulses) indicated a high speed (6.3 × 107 K/s) of the surface melting. As a result of the
further rapid crystallization, a polycrystalline structure formed; its grains are 21.3 µm on average,
which is approximately twice as small as an average grain in the as-delivered steel. Since the surface
layer crystallizes rapidly, crystallization cells ranging 120 to 170 nm (Figure 3a) develop in the volume
of grains, principally, along boundaries. In the volume of grains, there are microtwins grouping in
blocks and a dislocation substructure (Figure 3b). The scalar density of dislocations is 5.7 × 1010 cm−2,
which is almost 1.5 times higher than in the as-delivered steel. An important characteristic of the
surface structure is the lack of second-phase fragments found when examining the as-delivered
steel. Apparently, inclusions dissolve because the steel surface melts when irradiated with a pulsed
electron beam.
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Figure 3. Electron microscopic image of steel surface treated with a pulsed electron beam: (a) SEM and
(b,c) TEM.

The research into the steel structure using TEM of thin foils has pointed out extinction bend
contours (Figure 3c), which indicate the crystal lattice bending–torsion in the material affected by
internal stress fields. As mentioned above, a region where the liquid state of the material turns into
a solid one is found at a depth of 10–11 µm. The specific characteristic of the steel in this layer is M23C6

carbide phase particles detected in the volume and on boundaries of grains. In the volume of grains,
there are spherical 10–12 nm particles. They form extended micrometer long and up to 100 nm deep
layers on grain boundaries.

Therefore, the irradiation of AISI 310S high-chromium austenitic steel with an intensive pulsed
electron beam (18 keV, 20 J/cm2, 50 µs, 3 pulses, and 0.3 s−1, residual gas (argon) pressure in the
processing chamber of the unit ~0.02 Pa) makes a thin surface layer (≈10 µm) melt rapidly. The melting
of the surface layer initiates the dissolution of second-phase impurities. The investigation revealed
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carbide phase particles in the volume of grains and on their boundaries in the intermediate layer
(liquid phase—solid-phase state).

3.5. Structure and Phase Analysis of Fatigue-Induced Fracture in AISI 310S Steel Untreated with
an Electron Beam

The fatigue testing of the as-delivered steel (unexposed to the electron beam treatment) caused
the fracture of samples after ~1.5 × 105 loading cycles. Figure 3 presents the SEM data on fractured
steel surfaces. As seen in the data, structure transformations are most significant in the interval
10–12 µm deep surface. Fine sizes of disintegration crystallites are typical for the forming layer
(from 0.5 to 1.0 µm), which is separated from the main volume, and numerous micropores are detected
along this boundary (shown by the arrow in Figure 4a).
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Numbers show the position of steel objects (films) under TEM study. (a) general view; (b) enlarged photo.

The structure-phase state of the surface was investigated by using the methods of TEM. Objects of
interest (foils) were placed parallel to the front surface of a sample, i.e., opposite to the side with a
stress riser, ~1, ~10, and ~80 µm away from the front surface and maximally close to the fractured
surface. TEM-investigated objects are numbered in Figure 5. The research on the phase composition
and defect substructure of foils taken from layer 1 (Figure 4a) has disclosed certain transformations in
the steel state.

Materials 2020, 13, x FOR PEER REVIEW 6 of 13 

 

3.5. Structure and Phase Analysis of Fatigue-Induced Fracture in AISI 310S Steel Untreated with an 
Electron Beam 

The fatigue testing of the as-delivered steel (unexposed to the electron beam treatment) caused 
the fracture of samples after ~1.5 × 105 loading cycles. Figure 3 presents the SEM data on fractured 
steel surfaces. As seen in the data, structure transformations are most significant in the interval 10–
12 µm deep surface. Fine sizes of disintegration crystallites are typical for the forming layer (from 0.5 
to 1.0 µm), which is separated from the main volume, and numerous micropores are detected along 
this boundary (shown by the arrow in Figure 4a). 

 
Figure 4. Fractography of the fatigue-fractured surface in AISI 310S steel. Arrows indicate micropores. 
Numbers show the position of steel objects (films) under TEM study. (a) general view; (b) enlarged 
photo. 

The structure-phase state of the surface was investigated by using the methods of TEM. Objects 
of interest (foils) were placed parallel to the front surface of a sample, i.e., opposite to the side with a 
stress riser, ~1, ~10, and ~80 µm away from the front surface and maximally close to the fractured 
surface. TEM-investigated objects are numbered in Figure 5. The research on the phase composition 
and defect substructure of foils taken from layer 1 (Figure 4а) has disclosed certain transformations 
in the steel state. 

 

Figure 5. Microcracks forming along boundaries of grains containing second-phase impurities (а) 
fragmented substructure (b) in fractured AISI 310S steel when fatigued. 

To begin with, volumes of steel with a nanodimensional structure are disclosed. In most cases, 
these zones are found in junction points of two microtwin systems. Crystallites in these zones vary 

Figure 5. Microcracks forming along boundaries of grains containing second-phase impurities
(a) fragmented substructure (b) in fractured AISI 310S steel when fatigued.



Materials 2020, 13, 4567 7 of 13

To begin with, volumes of steel with a nanodimensional structure are disclosed. In most cases,
these zones are found in junction points of two microtwin systems. Crystallites in these zones vary from
25 to 80 nm. The second important outcome is that there are extended microcracks along boundaries
of grains containing thin second-phase layers (Figure 5a).

Moreover, a band substructure developed in the volume of grains without microtwins when fatigue
testing (Figure 5b). The bands are fragmented; fragments are in the range from 50 to 100 nm. Reflexes
in the electron diffraction microphotograph taken on such a structure are indistinct, which highlights
the azimuthal disorientation in the bend structure and fragments. The azimuthal component in the full
angle of the substructure disorientation is estimated to be around 16 degrees.

In addition, the martensite γ⇒ ε transformation is observed in the surface layer in the process
of fatigue tests. Crystals of ε-martensite are detected near grain boundaries (Figure 6). Interestingly,
the formation of ε-martensite is attributed to cracking. In most cases, microcracks are along grain
boundaries where ε-martensite lamellae are found. Thus, it is assumed the martensite transformation
is initiated by elastic stresses developing close to grain boundaries.
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Figure 6. Crystals of ε-martensite forming close to grain boundaries on the surface of the
fatigue-fractured AISI 310S steel; (a) bright field; (b) electron diffraction micropattern, with the
arrow indicating reflexes where a dark field is obtained; (c) dark field recorded in the closely located
reflexes [111]γ-Fe + [002]γ-Fe + [101]ε-Fe. The arrows (c) point at ε-martensite crystals.

Finally, the fatigue-induced fracture of steel is the reason for the intensive microtwinning and, as
a consequence, the complex bending–torsion of the steel crystal lattice. Electron microscopic image
data on such grains demonstrate numerous extinction bend contours of a variety of shapes and sizes,
which are clearly indicative for the development of inner stress fields in the steel.

Grains with a nanocrystalline structure similar to that detected in the surface are observed in an
approximately 10 µm deep layer (Figure 4a, 2). However, the quantity of these grains is rather low.
Therefore, a nanocrystalline structure forms in the fractured zone of AISI 310S steel in the layer to
~10 µm deep, as seen in SEM-based analysis data on the steel fractured surface (Figure 4). The principal
substructure developing in the ~10 µm deep layer represents microtwins of one or two twinning
systems. Identically, microtwinning is suggested to be the key deformation mechanism of steel in
the ~80 µm deep layer (Figure 4a, 3). In most cases, only one twinning system is identified in grains.
Twins are arranged as lengthy packages and expand almost over the entire volume of grains.

As is known, a fragmented substructure is an origin zone of the ductile fracture in a material.
We consider this process in view of the following evolution scenario. While a fragmented structure
is exposed to deformation, local zones unable for the further evolution (a so-called critical structure)
develop in it [36]. The research on this phenomenon has pointed out that microcracks open along certain
boundaries and may stop near particular joints [36,37]. As a rule, these boundaries represent boundaries
with a significant plastic displacement of neighboring regions in a crystal (above 15–20 degrees),
i.e., the rotational instability as detaching disclinations develop in such zones of a sample under
deformation. In view of the research outcomes on AISI 310S steel and the information presented above,
we conclude that several regions with a critical structure unable for the further evolution form in the
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approximately 10 µm deep surface layer of the fatigued steel. The development of this structure may
initiate the origin and propagation of microcracks and fracture of the whole sample, as a consequence.

Another factor furthering the fatigue fracture in the steel of interest is second-phase particles
(mainly those of M23C6 carbide). The deformation incompatibility of particles and matrix is responsible
for the growth of inner stress fields, which, in turn, causes cracking once a critical substructure evolves.

To summarize, the fracture of AISI 310S steel exposed to high-cycle fatigue (N = ~1.5 × 105 cycles)
depends on the combination of several factors: locally forming regions with a so-called critical structure
unable for the further evolution, i.e., volumes of the material with a depleted plasticity (fatigue life)
resource, in other words, volumes of the material with a nanocrystalline structure. The approximately
10 µm deep surface layer with a nanocrystalline structure has a distinct boundary with a volume
of the material beneath it. The second important reason for the fracture in the steel under study is
second-phase impurities, which represent inner stress risers promoting the propagation of microcracks.

3.6. Structure and Phase Analysis of Fatigue-Induced Fracture in AISI 310S Steel Treated with a
Pulsed Electron Beam

The fatigue testing of steel irradiated with a pulsed electron beam has resulted in the fracture
of samples after ~3.3 × 105 cycles; that is twice as long as the fatigue life of steel untreated with an
electron beam. The SEM-based research on the fractured surface has detected an around 10 µm deep
layer with a columnar structure (Figure 7a) and a thin (≈0.5 µm) film on the surface of the specimen
(Figure 7b, the film is indicated with arrows). There are microcraters on the sample surface (Figure 8b,c
and microcraters are indicated with white arrows). In some cases, second-phase impurities up to 5 µm
are detectable on the bottom of microcraters (Figure 8c; the impurity is shown in a yellow arrow).

To explore the phase composition and defect substructure of the fractured sample, we used
electron diffraction microscopy of thin foils. Foils were prepared of lamellae found in the volume of the
sample (Figure 8a). Following the data on the calculated temperature field developing in the process
of electron beam treatment, we prepared foil 1 of a fragment taken from the surface layer formed in
conditions of rapid crystallization; for foil 2, a fragment was used from the contact region of liquid-
and solid-phase layers; and foil 3 represented the thermal impact layer. If, when bending the sample,
it is assumed that the load is directed perpendicular to the surface of the sample, then the foils were
made perpendicular to the direction of the load. The structure of destroyed samples was analyzed.

The investigation on the surface layer (layer 1) has revealed a polycrystalline structure.
The dislocation substructure as chaotically distributed and mesh-forming dislocations is observed
in the volume of grains; the cellular dislocation substructure is less frequent. The scalar density of
dislocations is as high as ≈5 × 1010 cm−2. In the volume of grains, there are microtwins, which form
packages of parallel lamellae.
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Figure 8. Fractography of the fatigue-fractured surface in AISI 310S steel treated with an electron
beam and fractured when fatigue testing. The data in (a) present TEM-explored layers of a sample;
arrows (b) highlight microcraters on the surface treated with an electron beam; a light arrow (c) points
at a microcrater causing the formation of a mainstream macrocrack, and a color arrow indicates
second-phase fragments.

The fatiguing leads to the bending–torsion of the steel crystal lattice. This phenomenon, seen as
extinction bend contours in images of the structure, has been detected once the material structure was
analyzed using the method of thin foils. The bending–torsion of the crystal lattice in the surface layer
originates on grain boundaries and in microtwins. The extinction bend contour width is inversely
related to the value of inner stresses. The mean crosswise size of extinction bend contours developing
at boundaries of microtwins lamellae is measured to be 140 nm; that at grain boundaries is 120 nm;
and at boundaries of carbide phase particles (in a range from 0.15 to 0.20 µm), it is 72 nm. Therefore,
particles of carbide phase are the most significant stress risers in the steel surface under study.

The fatiguing of samples pretreated with electron beams results in the decomposition of the
solid γ-iron solution and formation of the second-phase impurities (Figure 9a). Spherical particles
vary in the range of 20 to 40 nm. These particles are supposed to be chromium-based (Cr, Fe)23C6

carbide according to the indexing of the electron diffraction micropattern obtained on the volume of
the material with second-phase impurities (Figure 9b).
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Figure 9. Electron microscopic image of carbide phase particles surrounded by grains in the AISI
310S steel surface processed with electron beams and fractured when fatigue testing; (a) bright field;
(b) electron diffraction micropattern, a reflex where a dark field was obtained is indicated with an arrow;
(c) a dark field obtained in similar reflexes (002)γ-Fe + (006)Cr23C6; arrows (a,c) point at carbide
phase particles.
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Microtwins represent the major grain substructure in the layer at the depth of ~10 µm (layer 2,
Figure 8a). Microtwins occur in grains as packages of parallel lamellae. In some cases, systems of
contacting microtwins are revealed. The dislocation substructure of such grains comprises dislocation
meshes with quite a high scalar density of dislocations ≈8.4 × 1010 cm−2. The percentage of the
dislocation chaos substructure is insignificant.

A band dislocation structure tends to develop in grains without microtwins. Bands are arranged in
slightly disoriented regions varying in the range from 150 to 300 nm. Chains of 60 to 100 nm subgrains
are detected along grain boundaries. The azimuth component in the total disorientation angle of
subgrains is around 12 degrees.

In some cases, microcracks formed in the process of preparing foils (the object of TEM-based study
on the steel). Microcracks are detected mainly along grain boundaries, thus indicating the most stressed
regions of the fatigued material. To illustrate this phenomenon, Figure 10 demonstrates a typical view
of the structure obtained by means of electron diffraction microscopy. As a rule, lengthy second-phase
layers are found on these grain boundaries. Therefore, high-level inner stress fields develop in the ~10
µm deep layer similarly to the surface, i.e., at the boundary of matrix with the carbide particle.
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Figure 10. Electron microscopic image of a microcrack (indicated with the arrow (a)) detected in
a ~10 µm deep layer in AISI 310S steel irradiated with an electron beam and fractured when fatigue
testing; (b) shows a zoomed image of the zone presented in (a).

In a layer at a depth of approximately 80 µm (thermal impact layer), there are microtwins
grouping in packages of parallel lamellae and surrounded by grains and a dislocation substructure in
a form of chaotically distributed and mesh-forming dislocations. In some cases, a cellular dislocation
substructure is observed along grain boundaries, and the scalar density of dislocations approximates
to 6 × 1010 cm−2.

4. Conclusions

To sum up, the research was carried out and highlighted that the fatigue-induced fracture of
untreated (not irradiated with a pulsed electron beam) AISI 310S steel is a result of locally forming zones
with a so-called critical (nanodimensional) structure, unable for further evolution, i.e., with a depleted
plasticity (fatigue life) resource. An approximately 10 µm deep surface layer was established to have a
nanodimensional structure and a distinct boundary with a beneath-laying material. The second reason is
the formation of microcracks because of inner stress risers in steel—submicron second-phase impurities.

The important outcome to emerge from this study was the operation mode of the pulsed
submillisecond electron beam supply source (20 J/cm2, 50 µs, 0.3 s−1, 3 pulses, and residual gas (argon)
pressure in the processing chamber, 0.02–0.03 Pa). The pretreatment of the AISI 310S steel surface in
these conditions almost doubles the fatigue life of the material.
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The research revealed no zones with a critical structure, i.e., regions where potential microcracks
may form due to the pretreatment of samples with an electron beam (energy density of an electron
beam 20 J/cm2 (50 µs, 0.3 s−1, and 3 pulses). The most probable reason for the fracture of electron beam
irradiated steel samples was suggested to be the evolution of microcraters on the surface; these defects
are stress concentrators promoting the formation of microcracks.

In the frame of the study, LBL electron microscopic microdiffraction investigations were conducted,
which pointed out the gradient behavior of phase composition and steel defect substructure. The study
revealed the substructure forming in an approximately 10 µm deep layer with a high level of inner
stress fields; their maximal values were registered at the carbide-matrix boundary. In view of all the
facts mentioned above, it was concluded that one of the possible measures to improve the fatigue life
of steel is to neutralize the crater formation process on the electron beam treatment surface.
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