Influence of Parent Concrete Properties on Compressive Strength and Chloride Diffusion Coefficient of Concrete with Strengthened Recycled Aggregates
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials and Specimen Preparation
2.1.1. Materials
2.1.2. RCA Strengthening
2.1.3. The Determination of Old Mortar Content
2.1.4. Properties of RCA
2.1.5. Specimen Preparation
2.2. Test Methods
2.2.1. Pore Structure
2.2.2. Chloride Diffusion in RAC
3. Experimental Results and Discussions
3.1. Properties of Strengthened RCA
3.2. The Pore Structure of Mortar in RAC
3.3. Compressive Strength of RAC
3.4. Chloride Diffusion of RAC
4. Prediction of the Chloride Diffusion Coefficient in Recycled Concrete
4.1. Three-Phase Model for the Prediction of DRAC
4.2. Test Verification
4.3. Parameter Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation and Abbreviations
RAC | recycled aggregate concrete |
DRAC | the chloride diffusion coefficient in RAC |
ITZ | interfacial transition zone |
NCA | natural coarse aggregate |
RCA | recycled coarse concrete |
CRCA | carbonated RCA |
the chloride diffusion coefficient in old mortar | |
the volume fraction of recycled coarse concrete | |
ϕcapnm | capillary porosity of the new mortar |
ϕcrinm | critical porosity of the new mortar |
ϕcapom | capillary porosity of the old mortar; |
ϕcriom | critical porosity of the old mortar; |
RsopRCA | water absorption of RCA |
RsopOM | water absorption of old mortar |
RsopOA | water absorption of original natural aggregate |
MwaterOM | the water content of old mortar in the saturated surface dry state |
MwaterInOA | the water content of original natural aggregate in the saturated surface dry state |
MdryOM | mass of old mortar in the dry state |
MdryOA | mass of original natural aggregate in the dry state |
MRCA | mass of RCA in the dry state |
MdryOM | mass of old mortar in the dry state |
MdryOA | mass of original natural aggregate in the dry state |
ROM | old mortar content in RCA by mass ratio |
old mortar content in RCA by volume ratio | |
the apparent density of an old mortar | |
the apparent density of RCA | |
W/Cparent | the water-to-cement ratio of parent concrete |
References
- Bendixen, M.; Best, J.; Hackney, C.; Iversen, L.L. Time is running out for sand. Nature 2019, 571, 29–31. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Wang, C.H.; Ding, T.; Akbarnezhad, A. A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 2018, 199, 868–881. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, M.; Tang, Q.; Liang, C.; Duan, Z. Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage. Constr. Build. Mater. 2020, 237, 1–12. [Google Scholar] [CrossRef]
- Zhang, M.H.; Li, H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 2011, 25, 608–616. [Google Scholar] [CrossRef]
- Zhu, H.J.; Zhang, Z.H.; Zhu, Y.C.; Tian, L. Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars. Constr. Build. Mater. 2014, 65, 51–59. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash. J. Wuhan Univ. Technol. 2006, 21, 130–136. [Google Scholar]
- Tam, V.W.Y.; Tam, C.M.; Le, K.N. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour. Conserv. Recycl. 2007, 50, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Rajhans, P.; Gupta, P.K.; Kumar, R.R.; Panda, S.K.; Nayak, S. EMV mix design method for preparing sustainable self compacting recycled aggregate concrete subjected to chloride environment. Constr. Build. Mater. 2019, 199, 705–716. [Google Scholar] [CrossRef]
- Ma, Z.M.; Li, W.; Wu, H.X.; Cao, C.W. Chloride permeability of concrete mixed with activity recycled powder obtained from C&D waste. Constr. Build. Mater. 2019, 199, 652–663. [Google Scholar]
- Wu, Y.C.; Xiao, J.Z. Multiscale digital-image driven stochastic finite element modeling of chloride diffusion in recycled aggregate concrete. Constr. Build. Mater. 2018, 162, 239–252. [Google Scholar] [CrossRef]
- Liu, B.; Feng, C.; Deng, Z.H. Shear behavior of three types of recycled aggregate concrete. Constr. Build. Mater. 2019, 217, 557–572. [Google Scholar] [CrossRef]
- Zhou, C.H.; Chen, Z.P. Mechanical properties of recycled concrete made with different types of coarse aggregate. Constr. Build. Mater. 2017, 134, 497–506. [Google Scholar] [CrossRef]
- Abdulla, N.A. Effect of Recycled Coarse Aggregate Type on Concrete. J. Mater. Civ. Eng. 2015, 27, 04014273. [Google Scholar] [CrossRef]
- Xuan, D.X.; Zhan, B.J.; Poon, C.S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem. Concr. Compos. 2016, 65, 67–74. [Google Scholar] [CrossRef]
- Zhang, J.K.; Shi, C.J.; Li, Y.K.; Pan, X.Y.; Poon, C.S.; Xie, Z.B. Influence of carbonated recycled concrete aggregate on properties of cement mortar. Constr. Build. Mater. 2015, 98, 1–7. [Google Scholar] [CrossRef]
- Zhang, H.R.; Zhao, Y.X.; Meng, T.; Shah, S.P. The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test. Constr. Build. Mater. 2015, 95, 721–735. [Google Scholar] [CrossRef]
- Singh, L.P.; Bisht, V.; Aswathy, M.S.; Chaurasia, L.; Gupta, S. Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Constr. Build. Mater. 2018, 181, 217–226. [Google Scholar] [CrossRef]
- Zhang, H.R.; Zhao, Y.X.; Meng, T.; Shah, S.P. Surface Treatment on Recycled Coarse Aggregates with Nanomaterials. J. Mater. Civ. Eng. 2016, 28, 1–11. [Google Scholar] [CrossRef]
- Yu, B.; Ma, Q.; Huang, H.C.; Chen, Z. Probabilistic prediction model for chloride diffusion coefficient of concrete in terms of material parameters. Constr. Build. Mater. 2019, 215, 941–957. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Gong, X.L.; Wu, L.J. Prediction model of chloride diffusion in concrete considering the coupling effects of coarse aggregate and steel reinforcement exposed to marine tidal environment. Constr. Build. Mater. 2019, 216, 40–57. [Google Scholar] [CrossRef] [Green Version]
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of fiber reinforced self-compacting concrete (SCC) containing nano-SiO2 and silica fume. Eur. J. Environ. Civ. Eng. 2018, 22, 1–27. [Google Scholar] [CrossRef]
- Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S. Effect of Nanosilica Particle Size on the Water Permeability, Abrasion Resistance, Drying Shrinkage, and Repair Work Properties of Cement Mortar Containing Nano-SiO2. Adv. Mater. Sci. Eng. 2017, 2017, 4213690. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Banthia, N.; Grace, J.R.; Cohen, S. Carbonation in concrete infrastructure in the context of global climate change: Part 2-Canadian urban simulations. Cem. Concr. Compos. 2012, 34, 931–935. [Google Scholar] [CrossRef]
- Talukdar, S.; Banthia, N.; Grace, J.R. Carbonation in concrete infrastructure in the context of global climate change—Part 1: Experimental results and model development. Cem. Concr. Compos. 2012, 34, 924–930. [Google Scholar] [CrossRef]
- Kou, S.C.; Zhan, B.J.; Poon, C.S. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cem. Concr. Compos. 2014, 45, 22–28. [Google Scholar] [CrossRef]
- Zhan, B.; Poon, C.S.; Liu, Q.; Kou, S.; Shi, C. Experimental study on CO2 curing for enhancement of recycled aggregate properties. Constr. Build. Mater. 2014, 67, 3–7. [Google Scholar] [CrossRef]
- Xiao, J. Recycled Aggregate Concrete Structures; Springer: Berlin, Germany, 2018. [Google Scholar]
- Song, Y.; Huang, Z.; Shena, C.; Shic, H.; Langed, D.A. Deep learning-based automated image segmentation for concrete petrographic analysis. Cem. Concr. Res. 2020, 135, 1–13. [Google Scholar] [CrossRef]
- Tang, L.P.; Nilsson, L.O. Rapid-Determination of the Chloride Diffusivity in Concrete by Applying an Electrical-Field. ACI Mater. J. 1992, 89, 49–53. [Google Scholar]
- Shi, C.J.; Wu, Z.M.; Cao, Z.J.; Ling, T.C.; Zheng, J.L. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cem. Concr. Compos. 2018, 86, 130–138. [Google Scholar] [CrossRef]
- Xuan, D.X.; Zhan, B.J.; Poon, C.S. Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates. Cem. Concr. Compos. 2017, 84, 214–221. [Google Scholar] [CrossRef]
- Leite, M.B.; Monteiro, P.J.M. Microstructural analysis of recycled concrete using X-ray microtomography. Cem. Concr. Res. 2016, 81, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials. Cem. Concr. Res. 2006, 36, 1304–1311. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.J.; Li, S.Y.; Zhao, Y. Assessment of the freeze-thaw resistance of concrete incorporating carbonated coarse recycled concrete aggregates. J. Ceram. Soc. Jpn. 2017, 125, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Wu, S.X.; Zhou, J.K. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Li, L.; Poon, C.S.; Xiao, J.Z.; Xuan, D.X. Effect of carbonated recycled coarse aggregate on the dynamic compressive behavior of recycled aggregate concrete. Constr. Build. Mater. 2017, 151, 52–62. [Google Scholar] [CrossRef]
- Shi, C.J.; Li, Y.K.; Zhang, J.K.; Li, W.G.; Chong, L.L.; Xie, Z.B. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Kong, D.Y.; Lei, T.; Zheng, J.J.; Ma, C.C.; Jiang, J. Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Constr. Build. Mater. 2010, 24, 701–708. [Google Scholar] [CrossRef]
- Ying, J.W.; Zhou, B.; Xiao, J.Z. Pore structure structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr. Build. Mater. 2017, 150, 49–55. [Google Scholar] [CrossRef]
- Song, H.W.; Lee, C.H.; Ann, K.Y. Factors influencing chloride transport in concrete structures exposed to marine environments. Cem. Concr. Compos. 2008, 30, 113–121. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, Y.; Sun, W. Investigation of chloride ion permeability by permit method and its correlation with porosity of concrete. J. Chin. Silic. Soc. 2010, 38, 1707–1712. [Google Scholar]
- Shafikhani, M.; Chidiac, S.E. A holistic model for cement paste and concrete chloride diffusion coefficient. Cem. Concr. Res. 2020, 133, 10. [Google Scholar] [CrossRef]
- Zheng, J.J.; Zhang, J.; Zhou, X.Z.; Song, W.B. A numerical algorithm for evaluating the chloride diffusion coefficient of concrete with crushed aggregates. Constr. Build. Mater. 2018, 171, 977–983. [Google Scholar] [CrossRef]
- Ying, J.W.; Xiao, J.Z.; Shen, L.M.; Bradford, M.A. Five-phase composite sphere model for chloride diffusivity prediction of recycled aggregate concrete. Mag. Concr. Res. 2013, 65, 574–588. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Bentz, D.P. Multiscale analytical/numerical theory of the diffusivity of concrete. Adv. Cem. Based Mater. 1998, 8, 77–88. [Google Scholar] [CrossRef]
- Sun, G.; Sun, W.; Zhang, Y.; Liu, Z. Prediction of the Effective Diffusion Coefficient of Chloride Ions in Cement-Based Composite Materials. J. Mater. Civ. Eng. 2012, 24, 1245–1253. [Google Scholar] [CrossRef]
- Sun, G.W.; Zhang, Y.S.; Sun, W.; Liu, Z.Y.; Wang, C.H. Multi-scale prediction of the effective chloride diffusion coefficient of concrete. Constr. Build. Mater. 2011, 25, 3820–3831. [Google Scholar] [CrossRef]
No. | Coarse Aggregate Type | Cement | Silica Fume | Water | Coarse Aggregate | Fine Aggregate | Water Reducing Agent |
---|---|---|---|---|---|---|---|
NAC1 | NCA | 465 | 0 | 186 | 1054 | 705 | 5 |
NAC2 | NCA | 408 | 0 | 204 | 1054 | 705 | 4 |
NAC3 | NCA | 364 | 0 | 218 | 1054 | 705 | 4 |
RAC1 | RCA1 | 405 | 45 | 180 | 957 | 705 | 4 |
RAC2 | RCA2 | 405 | 45 | 180 | 948 | 705 | 4 |
RAC3 | RCA3 | 405 | 45 | 180 | 935 | 705 | 4 |
CRAC1 | CRCA1 | 405 | 45 | 180 | 968 | 705 | 4 |
CRAC2 | CRCA2 | 405 | 45 | 180 | 962 | 705 | 4 |
CRAC3 | CRCA3 | 405 | 45 | 180 | 954 | 705 | 4 |
NRAC1 | RCA1-ns | 405 | 45 | 180 | 965 | 705 | 4 |
NRAC2 | RCA2-ns | 405 | 45 | 180 | 954 | 705 | 4 |
NRAC3 | RCA3-ns | 405 | 45 | 180 | 939 | 705 | 4 |
No. | RsopRCA (%) | ρOM (kg/m3) | ρRCA (kg/m3) | Rom (%) | Rcrushing (%) |
---|---|---|---|---|---|
RCA1 | 5 | 2190 | 2594 | 37.2 | 17.1 |
RCA2 | 5.6 | 2181 | 2589 | 38.2 | 17.8 |
RCA3 | 6.5 | 2095 | 2583 | 38.3 | 18.4 |
CRCA1 | 4.4 | 2255 | 2603 | 37.8 | 16.3 |
CRCA2 | 4.8 | 2248 | 2601 | 38.8 | 16.2 |
CRCA3 | 5.3 | 2244 | 2597 | 38.5 | 17.1 |
RCA1-ns | 4.5 | 2213 | 2598 | 37.7 | 16.1 |
RCA2-ns | 5.1 | 2195 | 2591 | 39.0 | 17.2 |
RCA3-ns | 6.1 | 2120 | 2581 | 38.8 | 17.3 |
= 1% | 0.65 | 0.46 | 0.31 | 0.18 |
= 7% | 0.65 | 0.80 | 0.99 | 1.20 |
= 17% | 0.68 | 1.43 | 3.28 | 12.8 |
= 10% | 3.6 | 16.2 | 19.1 | 19.5 |
= 50% | 4.4 | 5.4 | 12.4 | 18.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, J.; Han, Z.; Shen, L.; Li, W. Influence of Parent Concrete Properties on Compressive Strength and Chloride Diffusion Coefficient of Concrete with Strengthened Recycled Aggregates. Materials 2020, 13, 4631. https://doi.org/10.3390/ma13204631
Ying J, Han Z, Shen L, Li W. Influence of Parent Concrete Properties on Compressive Strength and Chloride Diffusion Coefficient of Concrete with Strengthened Recycled Aggregates. Materials. 2020; 13(20):4631. https://doi.org/10.3390/ma13204631
Chicago/Turabian StyleYing, Jingwei, Zewen Han, Luming Shen, and Wengui Li. 2020. "Influence of Parent Concrete Properties on Compressive Strength and Chloride Diffusion Coefficient of Concrete with Strengthened Recycled Aggregates" Materials 13, no. 20: 4631. https://doi.org/10.3390/ma13204631
APA StyleYing, J., Han, Z., Shen, L., & Li, W. (2020). Influence of Parent Concrete Properties on Compressive Strength and Chloride Diffusion Coefficient of Concrete with Strengthened Recycled Aggregates. Materials, 13(20), 4631. https://doi.org/10.3390/ma13204631