An Advanced TiAl Alloy for High-Performance Racing Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Room Temperature and Hot Tensile Tests
3.3. Rotating Bending Tests
3.4. Fracture Analysis
4. Conclusions
- With an increasing deformation ratio, a finer grain size can be obtained. This fact lasts until φ = 1.4, where a saturation level is reached with a grain size of about 1.8 μm. The characteristic α2/γ colonies disappear continuously and are replaced by globular α2- and γ-grains through dynamic and static recrystallization, surrounded by elongated βo-grains.
- Employing RT tensile tests, a fracture strain of about 1.3% and a yield strength of 1121 MPa are determined for φ = 1.4. This condition exhibits a fine-grained and homogenous microstructure. At 800 °C, the yield strength amounts to 404 MPa and a fracture strain of more than 87% can be obtained. Additionally, a decreasing grain size is observed, which results in a significantly lower brittle-to-ductile transition temperature.
- A clear dependence between the fatigue limit and the degree of deformation is found. Caused by the smaller grain size as a result of the extrusion process, the material’s fatigue limit at RT increases from 575 to 950 MPa. Here, large microstructural constituents are identified as initial defects within the microstructure. However, a high deformation degree reduces the size of these constituents, which is an effective way to increase the endurance limit. Comparing the ultimate tensile strength and the fatigue limit of the different deformed specimens allowed the determination of a proportionality factor in the range of 0.78 to 0.85.
- Two different crack initiation modes are determined depending on the existing microstructure. (i) Within the cast/HIPed and HT microstructure, the crack initiates at the boundaries of coarse (α2/γ)col near the sample surface and cleaves the colony in an interlamellar way along the α2/γ-interfaces. (ii) Initial defects are identified as elongated and globular γ-grains in deformed and heat treated material conditions. Consequently, to attain a homogeneous and defect-free microstructure is pivotal for the fatigue behavior.
- A conditional fracture toughness can be estimated based on the dimensions of the so-called fracture mirrors of the failed fatigue samples. This value amounts to 9.2 ± 0.7 for the undeformed and about 6.5 ± 0.5 in case of the differently deformed conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Tetsui, T.; Ono, S. Endurance and composition and microstructure effects on endurance of TiAl used in turbochargers. Intermetallics 1999, 7, 689–697. [Google Scholar] [CrossRef]
- Kim, Y.-W. Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 1994, 46, 30–39. [Google Scholar] [CrossRef]
- Baur, H.; Joos, R.; Smarsly, W.; Clemens, H. γ-TiAl for Aeroengine and Automotive Applications. Intermetallics 2006, 10, 384–390. [Google Scholar]
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High. Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Pflumm, R.; Donchev, A.; Mayer, S.; Clemens, H.; Schütze, M. High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys. Intermetallics. 2014, 53, 45–55. [Google Scholar] [CrossRef]
- Yoshihara, M.; Miura, K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics 1995, 3, 357–363. [Google Scholar] [CrossRef]
- Schwaighofer, E.; Clemens, H.; Mayer, S.; Lindemann, J.; Klose, J.; Smarsly, W.; Güther, V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics 2014, 44, 128–140. [Google Scholar] [CrossRef]
- Schwaighofer, E.; Clemens, H.; Lindemann, J.; Stark, A.; Mayer, S. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy. Mater. Sci. Eng. A 2014, 614, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Eylon, D.; Keller, M.; Jones, P. Development of permanent-mold cast TiAl automotive valves. Intermetallics 1998, 6, 703–708. [Google Scholar] [CrossRef]
- Gebauer, K. Performance, tolerance and cost of TiAl passenger car valves. Intermetallics 2006, 14, 355–360. [Google Scholar] [CrossRef]
- Badami, M.; Marino, F. Fatigue tests of un-HIP’ed γ-TiAl engine valves for motorcycles. Int. J. Fatigue 2006, 28, 722–732. [Google Scholar] [CrossRef]
- Tetsui, T. A newly developed hot worked TiAl alloy for blades and structural components. Scr. Mater. 2002, 47, 399–403. [Google Scholar] [CrossRef]
- Chladil, H.; Clemens, H.; Leitner, H.; Bartels, A.; Gerling, R.; Schimansky, F.-P.; Kremmer, S. Phase transformations in high niobium and carbon containing γ-TiAl based alloys. Intermetallics 2006, 14, 1194–1198. [Google Scholar] [CrossRef]
- Maki, K.; Shioda, M.; Sayashi, M.; Shimizu, T.; Isobe, S. Effect of silicon and niobium on oxidation resistance of TiAl intermetallics. In High Temperature Aluminides and Intermetallics; Whang, S., Pope, D., Liu, C., Eds.; Elsevier: San Diego, CA, USA, 1992; pp. 591–596. [Google Scholar]
- Lapin, J. TiAl-Based Alloys: Present Status and Future Perspectives. Metals 2009, 5, 19–21. [Google Scholar]
- Pflumm, R.; Friedle, S.; Schütze, M. Oxidation protection of γ-TiAl-based alloys—A review. Intermetallics 2015, 56, 1–14. [Google Scholar] [CrossRef]
- Appel, F.; Paul, J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys: Science and Technology; Wiley-VCH: Weinheim, Germany, 2011; pp. 5–248. [Google Scholar]
- Erdely, P.; Staron, P.; Maawad, E.; Schell, N.; Clemens, H.; Mayer, S. Lattice and phase strain evolution during tensile loading of an intermetallic, multi-phase γ-TiAl based alloy. Acta Mater. 2018, 158, 193–205. [Google Scholar] [CrossRef]
- Dahar, M.; Tamirisakandala, S.A.; Lewandowski, J.J. Evolution of fatigue crack growth and fracture behavior in gamma titanium aluminide Ti-43.5Al-4Nb-1Mo-0.1B (TNM) forgings. Int. J. Fatigue 2018, 111, 54–69. [Google Scholar] [CrossRef]
- Güther, V.; Allen, M.; Klose, J.; Clemens, H. Metallurgical processing of titanium aluminides on industrial scale. Intermetallics 2018, 103, 12–22. [Google Scholar] [CrossRef]
- Mayer, S.; Erdely, P.; Fischer, F.D.; Holec, D.; Kastenhuber, M.; Klein, T.; Clemens, H. Intermetallic β-Solidifying γ-TiAl Based Alloys−From Fundamental Research to Application. Adv. Eng. Mater. 2017, 19, 1600735. [Google Scholar] [CrossRef]
- Schloffer, M.; Schmoelzer, T.; Mayer, S.; Schwaighofer, E.; Hawranek, G.; Schimansky, F.-P.; Pyczak, F.; Clemens, H. The Characterisation of a Powder Metallurgically Manufactured TNM™ Titanium Aluminide Alloy Using Complimentary Quantitative Methods. Pr. Met. 2011, 48, 594–604. [Google Scholar] [CrossRef]
- Kim, Y.-W. Strength and ductility in TiAl alloys. Intermetallics 1998, 6, 623–628. [Google Scholar] [CrossRef]
- Tian, S.; Lv, X.; Yu, H.; Wang, Q.; Jiao, Z.; Sun, H. Creep behavior and deformation feature of TiAl–Nb alloy with various states at high temperature. Mater. Sci. Eng. A 2016, 651, 490–498. [Google Scholar] [CrossRef]
- Dimiduk, D. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials. Mater. Sci. Eng. A 1999, 263, 281–288. [Google Scholar] [CrossRef]
- Henaff, G.; Gloanec, A.-L. Fatigue properties of TiAl alloys. Intermetallics 2005, 13, 543–558. [Google Scholar] [CrossRef]
- Xu, W.; Shan, D.; Zhang, H.; Li, X.; Zhang, Y.; Nutt, S. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy. Mater. Sci. Eng. A. 2013, 571, 199–206. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Hu, L.; Yu, H. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy. Mater. Des. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Cheng, T.; Loretto, M. The decomposition of the beta phase in Ti–44Al–8Nb and Ti–44Al–4Nb–4Zr–0.2Si alloys. Acta Mater. 1998, 46, 4801–4819. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Intermetallic titanium aluminides as innovative high temperature lightweight structural materials—How materialographic methods have contributed to their development. Pract. Metallogr. 2015, 52, 691–721. [Google Scholar] [CrossRef]
- Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.; Juan, J.S.; Clemens, H.; Mayer, S. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures. Acta Mater. 2017, 128, 440–450. [Google Scholar] [CrossRef]
- Schmoelzer, T.; Liss, K.-D.; Kirchlechner, C.; Mayer, S.; Stark, A.; Peel, M.; Clemens, H. An in-situ high-energy X-ray diffraction study on the hot-deformation behavior of a β-phase containing TiAl alloy. Intermetallics 2013, 39, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Imayev, R.; Oehring, M.; Appel, F. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics 2007, 15, 451–460. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Du, Z.; Hou, Z.; Lin, P.; Kong, F.; Chen, Y. Deformation behavior of high Nb containing TiAl based alloy in α + γ two phase field region. Mater. Des. 2016, 90, 225–229. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2019, 55, 2661–2681. [Google Scholar] [CrossRef] [Green Version]
- Dahar, M.; Tamirisakandala, S.A.; Lewandowski, J.J. Fatigue crack growth and fracture behavior of as-cast Ti-43.5Al-4Nb-1Mo-0.1B (TNM) compared to Ti-48Al-2Nb-2Cr (4822). Intermetallics 2017, 91, 158–168. [Google Scholar] [CrossRef]
- Erdely, P.; Staron, P.; Maawad, E.; Schell, N.; Klose, J.; Clemens, H.; Mayer, S. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Mater. Des. 2017, 131, 286–296. [Google Scholar] [CrossRef]
- Hecht, U.; Witusiewicz, V.; Drevermann, A.; Zollinger, J. Grain refinement by low boron additions in niobium-rich TiAl-based alloys. Intermetallics 2008, 16, 969–978. [Google Scholar] [CrossRef]
- Hu, D. Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics 2002, 10, 851–858. [Google Scholar] [CrossRef]
- Gosslar, D.; Gunther, R. Inoculated Titanium Aluminide Alloys and Their Predicted Propensity for Grain Refinement. JOM 2014, 66, 1496–1501. [Google Scholar] [CrossRef]
- Chladil, H.F.; Clemens, H.; Otto, A.; Güther, V.; Kremmer, S.; Bartels, A.; Gerling, R. Charakterisierung einer β-erstarrenden γ-TiAl-Basislegierung. BHM Berg- und Hüttenmännische Monatshefte 2006, 151, 356–361. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wang, Y.; Liu, B.; He, Y. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression. Mater. Charact. 2014, 97, 169–177. [Google Scholar] [CrossRef]
- Halford, T.P.; Takashima, K.; Higo, Y.; Bowen, P. Fracture tests of microsized TiAl specimens. Fatigue Fract. Eng. Mater. Struct. 2005, 28, 695–701. [Google Scholar] [CrossRef]
- Palomares-García, A.J.; Pérez-Prado, M.T.; Molina-Aldareguia, J.M. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater. 2017, 123, 102–114. [Google Scholar] [CrossRef]
- Edwards, T.E.J.; Di Gioacchino, F.; Goodfellow, A.J.; Mohanty, G.; Wehrs, J.; Michler, J.; Clegg, W.J. Deformation of lamellar γ-TiAl below the general yield stress. Acta Mater. 2019, 163, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jin, X.; Huang, K.; Zong, Y.; Wu, S.; Zhong, X.; Kong, F.; Shan, D.; Nutt, S. Improvement of microstructure, mechanical properties and hot workability of a TiAl-Nb-Mo alloy through hot extrusion. Mater. Sci. Eng. A. 2017, 705, 200–209. [Google Scholar] [CrossRef]
- Palomares-García, A.J.; Pérez-Prado, M.T.; Molina-Aldareguia, J.M. Slip transfer across γ-TiAl lamellae in tension. Mater. Des. 2018, 146, 81–95. [Google Scholar] [CrossRef]
- Monchoux, J.-P.; Luo, J.; Voisin, T.; Couret, A. Deformation modes and size effect in near-γ TiAl alloys. Mater. Sci. Eng. A 2017, 679, 123–132. [Google Scholar] [CrossRef]
- Imayev, V.; Salishchev, G. On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermetallics 2000, 8, 1–6. [Google Scholar] [CrossRef]
- Sternitzke, M.; Appel, F.; Wagner, R. Local variations of the chemistry in as-cast gamma-TiAl (TiBx) alloys and its consequence for thermomechanical treatments. J. Microsc. 1999, 196, 155–161. [Google Scholar] [CrossRef]
- Appel, F.; Lorenz, U.; Oehring, M.; Sparka, U.; Wagner, R. Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Mater. Sci. Eng. A. 1997, 233, 1–14. [Google Scholar] [CrossRef]
- Kumpfert, J.; Kim, Y.; Dimiduk, D. Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W. Mater. Sci. Eng. A 1995, 192/193, 465–473. [Google Scholar] [CrossRef]
- Trail, S.; Bowen, P. Effects of stress concentrations on the fatigue life of a gamma-based titanium aluminide. Mater. Sci. Eng. A 1995, 192/193, 427–434. [Google Scholar] [CrossRef]
- Dlouhý, A.; Orlova, A.; Kuchařová, K. Evolution of microstructures during creep in TiAl-base intermetallics with a different Nb content. J. Phys. Conf. Ser. 2010, 240, 012091. [Google Scholar] [CrossRef]
- Edwards, T.E.J. Recent progress in the high-cycle fatigue behaviour of γ-TiAl alloys. Mater. Sci. Technol. 2018, 34, 1919–1939. [Google Scholar] [CrossRef] [Green Version]
- Mecking, H.; Hartig, C.; Kocks, U. Deformation modes in γ-TiAl as derived from the single crystal yield surface. Acta Mater. 1996, 44, 1309–1321. [Google Scholar] [CrossRef]
- Simkin, B.; Ng, B.; Crimp, M.; Bieler, T. Crack opening due to deformation twin shear at grain boundaries in near-γ TiAl. Intermetallics 2007, 15, 55–60. [Google Scholar] [CrossRef]
- Ng, B.; Simkin, B.; Crimp, M.; Bieler, T. The role of mechanical twinning on microcrack nucleation and crack propagation in a near-γ TiAl alloy. Intermetallics 2004, 12, 1317–1323. [Google Scholar] [CrossRef]
- Gnanamoorthy, R.; Mutoh, Y.; Mizuhara, Y. Fatigue crack growth behavior of equiaxed, duplex and lamellar microstructure γ-base titanium aluminides. Intermetallics 1996, 4, 525–532. [Google Scholar] [CrossRef]
- Sastry, S.M.L.; Lipsitt, H.A. Fatigue deformation of TiAl base alloys. Met. Mater. Trans. A. 1977, 8, 299–308. [Google Scholar] [CrossRef]
- Signori, L.J.; Nakamura, T.; Okada, Y.; Yamagata, R.; Nakashima, H.; Takeyama, M. Fatigue crack growth behavior of wrought γ-based TiAl alloy containing β-phase. Intermetallics 2018, 100, 77–87. [Google Scholar] [CrossRef]
- Mine, Y.; Takashima, K.; Bowen, P. Effect of lamellar spacing on fatigue crack growth behaviour of a TiAl-based aluminide with lamellar microstructure. Mater. Sci. Eng. A 2012, 532, 13–20. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Hu, D.; Dixon, M. Microstructural characterisation of fatigue crack growth fracture surfaces of lamellar Ti45Al2Mn2Nb1B. Intermet 2014, 45, 89–95. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Yuan, H.; Ding, H.; Chen, R.; Guo, J.; Fu, H.; Li, W. Effects of lamellar orientation on the fracture toughness of TiAl PST crystals. Mater. Sci. Eng. A 2019, 752, 199–205. [Google Scholar] [CrossRef]
- Leitner, T.; Schloffer, M.; Mayer, S.; Eßlinger, J.; Clemens, H.; Pippan, R. Fracture and R-curve behavior of an intermetallic β-stabilized TiAl alloy with different nearly lamellar microstructures. Intermetallics 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Gross, D.; Seelig, T. Bruchmechanik: Mit einer Einführung in die Mikromechanik, 4th ed.; Springer: Berlin Germany, 2007; pp. 210–232. [Google Scholar]
- ASTM Standard E399-09. Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Venkatesh, V.; Pilchak, A.L.; Allison, J.E.; Ankem, S.; Boyer, R.; Christodoulou, J.; Fraser, H.L.; Imam, M.A.; Kosaka, Y.; Rack, H.J.; et al. Advances in the Development of Processing-Microstructure Relations for Titanium Alloys. In Proceedings of the 13th World Conference on Titanium, Hoboken, NJ, USA, 16–20 August 2016; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Eck, S.; Maierhofer, J.; Tritremmel, C.; Gaenser, H.-P.; Marsoner, S.; Martin, N.; Pippan, R. Fatigue crack threshold analysis of TiAl SENT and CC specimens–Influence of starter notch and precracking. Intermetallics 2020, 121, 106770. [Google Scholar] [CrossRef]
- Appel, F.; Paul, J.D.; Staron, P.; Oehring, M.; Kolednik, O.; Predan, J.; Fischer, F.D. The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys. Mater. Sci. Eng. A 2018, 709, 17–29. [Google Scholar] [CrossRef]
- Zhu, B.; Xue, X.; Kou, H.; Li, X.; Li, J. Effect of microstructure on the fracture toughness of multi-phase high Nb-containing TiAl alloys. Intermetallics 2018, 100, 142–150. [Google Scholar] [CrossRef]
- Pippan, R.; Hageneder, P.; Knabl, W.; Clemens, H.; Hebesberger, T.; Tabernig, B. Fatigue threshold and crack propagation in γ-TiAl sheets. Intermetallics 2001, 9, 89–96. [Google Scholar] [CrossRef]
T | HV10 | UTS | Rp0.2 | εF | SF | KIC a | ||
---|---|---|---|---|---|---|---|---|
[–] | [°C] | [μm] | [–] | [MPa] | [MPa] | [%] | [MPa] | ] |
0 | 25 | 10.7 ± 4.2 | 342 ± 3 | 675 ± 27 | 660 ± 11 | 0.2 ± 0.1 | 575 | 9.2 ± 0.7 |
600 | – | – | 710 ± 2 | 568 ± 11 | 1.8 ± 0.3 | – | – | |
700 | – | – | 678 ± – | 535 ± – | 1.6 ± – | – | – | |
800 | – | – | 549 ± – | 439 ± – | 22.6 ± – | – | ||
0.6 | 25 | 6.9 ± 3.9 | 356 ± 3 | 929 ± 1 | 840 ± 8 | 1.7 ± 0.1 | 775 | 6.6 ± 0.4 |
600 | – | – | – b | – b | – b | – | – | |
700 | – | – | – b | – b | – b | – | – | |
800 | – | – | 526 ± 0 | 433 ± 1 | 90.2 ± 21 | – | – | |
1.4 | 25 | 1.8 ± 0.4 | 393 ± 2 | 1213 ± 11 | 1121 ± 0 | 1.3 ± 0.7 | 950 | 6.4 ± 0.5 |
600 | – | – | 1009 ± 20 | 860 ± 8 | 1.7 ± 0.1 | – | – | |
700 | – | – | 863 ± 2 | 673 ± 1 | 61.4 ± 4.8 | – | – | |
800 | – | – | 568 ± 18 | 404 ± 11 | 87.4 ± 14 | – | – | |
1.9 | 25 | 1.8 ± 0.5 | 386 ± 2 | 1133 ± 18 | 1108 ± 18 | 1.8 ± 0.1 | 950 | 6.5 ± 0.4 |
600 | – | – | 917 ± 20 | 795 ± 21 | 2.5 ± 0.1 | – | – | |
700 | – | – | 794 ± 3 | 639 ± 6 | 52.2 ± 30 | – | – | |
800 | – | – | 528 ± 6 | 399 ± 8 | 80.6 ± 8 | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtscher, M.; Klein, T.; Lindemann, J.; Lehmann, O.; Fellmann, H.; Güther, V.; Clemens, H.; Mayer, S. An Advanced TiAl Alloy for High-Performance Racing Applications. Materials 2020, 13, 4720. https://doi.org/10.3390/ma13214720
Burtscher M, Klein T, Lindemann J, Lehmann O, Fellmann H, Güther V, Clemens H, Mayer S. An Advanced TiAl Alloy for High-Performance Racing Applications. Materials. 2020; 13(21):4720. https://doi.org/10.3390/ma13214720
Chicago/Turabian StyleBurtscher, Michael, Thomas Klein, Janny Lindemann, Oliver Lehmann, Holger Fellmann, Volker Güther, Helmut Clemens, and Svea Mayer. 2020. "An Advanced TiAl Alloy for High-Performance Racing Applications" Materials 13, no. 21: 4720. https://doi.org/10.3390/ma13214720
APA StyleBurtscher, M., Klein, T., Lindemann, J., Lehmann, O., Fellmann, H., Güther, V., Clemens, H., & Mayer, S. (2020). An Advanced TiAl Alloy for High-Performance Racing Applications. Materials, 13(21), 4720. https://doi.org/10.3390/ma13214720