Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management
Abstract
:1. Introduction
2. Experiment Methodology
2.1. Preparation of TSG
2.1.1. Experimental Materials
2.1.2. Preparation of TSGs
2.2. Characterization
2.3. Battery Charge and Discharge Experiment
3. Results and Discussion
3.1. Characterization and Analysis of TSGs
3.1.1. Volume Resistivity and Thermal Conductivity
3.1.2. Friction and Wear Performance
3.1.3. Thermal Stability Analysis
3.1.4. Crystalline Characterization
3.1.5. Chemical Structure
3.1.6. The Oil Separation Time of TSG
3.2. Phase Change Characteristics of Composite Phase Change Materials (CPCMs)
3.3. The Influence of TSG on the Battery Charging and Discharging Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BTM | battery thermal management |
AIN | Aluminum nitride |
CP | copper powder |
CF | carbon fiber |
TSG | thermal silicone greases |
PCM | phase change material |
EG | expanded graphite |
PW | paraffin wax |
CPCM | composite phase change material |
SEM | scanning electron microscope |
XRD | X-ray diffraction technique |
FTIR | Fourier transform infrared spectrometer |
TGA | thermogravimetric analyzer |
DSC | differential scanning calorimeter |
References
- Chen, J.; Liu, B. Performance evaluation of carbon nanoparticle-based thermal interface materials. Diam. Relat. Mater. 2020, 108, 107976. [Google Scholar] [CrossRef]
- Feng, C.P.; Bai, L.; Bao, R.-Y.; Wang, S.-W.; Liu, Z.; Yang, M.-B.; Chen, J.; Yang, W. Superior thermal interface materials for thermal management. Compos. Commun. 2019, 12, 80–85. [Google Scholar] [CrossRef]
- Mao, D.; Chen, J.; Ren, L.; Zhang, K.; Yuen, M.M.F.; Zeng, X.; Sun, R.; Xu, J.-B.; Wong, C.-P. Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials. Compos. Part A Appl. Sci. Manuf. 2019, 123, 260–269. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Yu, W.; Chen, M.; Zhou, D.; Xie, H. Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3. Int. J. Therm. Sci. 2020, 152, 106293. [Google Scholar] [CrossRef]
- Roy, C.K.; Bhavnani, S.; Hamilton, M.C.; Johnson, R.W.; Knight, R.W.; Harris, D.K. Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Appl. Therm. Eng. 2016, 99, 72–79. [Google Scholar] [CrossRef]
- Hong, H.; Thomas, D.; Waynick, A.; Yu, W.; Smith, P.; Roy, W. Carbon nanotube grease with enhanced thermal and electrical conductivities. J. Nanopart. Res. 2010, 12, 529–535. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, G.; Lou, D.; Hong, H.; Widener, C.; Bailey, C.; Hrabe, R. Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Met. 2020, 259, 116213. [Google Scholar] [CrossRef]
- Han, L.; Huiqiang, L.; Zuoye, L.; Sheng, C. AlN/Ga-based Liquid Metal/PDMS Ternary Thermal Grease for Heat Dissipation in Electronic Devices. Rare Met. Mater. Eng. 2018, 47, 2668–2674. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Chen, L.; Zhu, Z.; Zhao, J.; Zhang, Z. Graphene based silicone thermal greases. Phys. Lett. A 2014, 378, 207–211. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.; An, J.; Choi, S.; Yang, J.; Jeong, H.; Huh, S. Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder. Materials 2020, 13, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shishkin, R.A.; Zemlyanskaya, A.P.; Beketov, A.R. High Performance Thermal Grease with Aluminum Nitride Filler and an Installation for Thermal Conductivity Investigation. Solid State Phenom. 2018, 284, 48–53. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, J.; Wang, M.; Hu, Y.; Chen, L.; Xie, H. Thermal conductivity enhancement in thermal grease containing different CuO structures. Nanoscale Res. Lett. 2015, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Qi, Y.; Yu, W.; Yin, J.; Xie, H. T-shape ZnO whisker: A more effective thermal conductive filler than spherical particles for the thermal grease. Int. J. Heat Mass Transf. 2017, 112, 1052–1056. [Google Scholar] [CrossRef]
- Chen, H.; Wei, H.; Chen, M.; Meng, F.; Li, H.; Li, Q. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl. Surf. Sci. 2013, 283, 525–531. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- He, X.; Wang, Y. Synergistic effects on the enhancement of thermal conductive properties of thermal greases. J. Appl. Polym. Sci. 2019, 136, 47726. [Google Scholar] [CrossRef]
- Yujun, G.; Zhongliang, L.; Guangmeng, Z.; Yanxia, L. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int. J. Heat Mass Transf. 2014, 74, 358–367. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, H.; Wu, Z.; Wang, Y.; Xie, H.; Zhang, M. Enhanced performance of photovoltaic—Thermoelectric coupling devices with thermal interface materials. Energy Rep. 2020, 6, 116–122. [Google Scholar] [CrossRef]
- Kusuma, W.J.; Fadarina; Hasan, A. Sodium Silicate Composite Filled by Zinc Oxide as Low Resistance Thermal Grease. J. Phys. Conf. Ser. 2019, 1167, 012045. [Google Scholar] [CrossRef]
- Chen, C.; He, Y.; Liu, C.; Xie, H.; Yu, W. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J. Mater. Sci. Mater. Electron. 2020, 31, 4642–4649. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, D.; Yang, X.; Liu, X.; Li, X.; Zhang, G. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery. Appl. Therm. Eng. 2019, 159, 113885. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Huang, J.; Cao, M.; Du, G. Expanded Graphite/Paraffin/Silicone Rubber as High Temperature Form-stabilized Phase Change Materials for Thermal Energy Storage and Thermal Interface Materials. Materials 2020, 13, 894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions. Int. Commun. Heat Mass Transf. 2016, 71, 35–43. [Google Scholar] [CrossRef]
- Cao, W.; Zhao, C.; Wang, Y.; Dong, T.; Jiang, F. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. Int. J. Heat Mass Transf. 2019, 138, 1178–1187. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, G.; Ran, Y.; Liu, P. Thermal performance of lithium ion battery pack by using cold plate. Appl. Therm. Eng. 2019, 160, 114088. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, S.; Li, K.; Zhang, G.; Habetler, T.G. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 2019, 436, 226879. [Google Scholar] [CrossRef]
- Jiang, K.; Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review. J. Energy Storage 2020, 32, 101816. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Cao, M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries. Appl. Therm. Eng. 2018, 131, 660–668. [Google Scholar] [CrossRef]
- Patel, J.R.; Rathod, M.K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries. J. Power Sources 2020, 480, 228820. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, J.; Shi, S.; Xing, Y.; Wu, H.; Hu, Z.; Wen, D. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. Energy Convers. Manag. 2017, 154, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Yang, X.; Li, X.; Zhang, G.; Wang, Z.; Yang, C. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Appl. Energy 2016, 178, 376–382. [Google Scholar] [CrossRef]
Thick, Wide, High (mm) | Internal Resistance (mΩ) | Capacity (Ah) | Weight (kg) | Charge and Discharge Cut-Off Voltage (V) | Nominal Voltage (V) | Maximum Charging Current (C) | Maximum Discharge Current (C) |
---|---|---|---|---|---|---|---|
27, 148, 130 | 0.6 | 65 | 1.2 | 2.7–4.2 | 3.7 | 1 | 3 |
Material Composition | AIN/CP (5:1) | AIN/CP (1:5) | AIN/CF (5:1) | AIN/CF (1:5) | CP/CF (5:1) | CP/CF (1:5) |
---|---|---|---|---|---|---|
Oil separation time (acidified) | 1.6 h | 1.2 h | 2.5 h | 5.2 h | 2 h | 5 h |
Oil separation time (unacidified) | 1.5 h | 1 h | 2.5 h | 4.8 h | 1.8 h | 4.5 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Huang, J.; Cao, M.; Jiang, G.; Hu, J.; Chen, Q. Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management. Materials 2020, 13, 4763. https://doi.org/10.3390/ma13214763
Liu Z, Huang J, Cao M, Jiang G, Hu J, Chen Q. Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management. Materials. 2020; 13(21):4763. https://doi.org/10.3390/ma13214763
Chicago/Turabian StyleLiu, Ziqiang, Juhua Huang, Ming Cao, Guiwen Jiang, Jin Hu, and Qiang Chen. 2020. "Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management" Materials 13, no. 21: 4763. https://doi.org/10.3390/ma13214763
APA StyleLiu, Z., Huang, J., Cao, M., Jiang, G., Hu, J., & Chen, Q. (2020). Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management. Materials, 13(21), 4763. https://doi.org/10.3390/ma13214763