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Abstract: Herein, a facile and efficient synthetic route to unique hybrid materials containing
polysiloxanes and mono(alkyl)silsesquioxanes as their pendant modifiers (T8@PS) was demonstrated.
The idea of this work was to apply the hydrosilylation reaction as a tool for the efficient and selective
attachment of mono(alkenyl)substituted silsesquioxanes (differing in the alkenyl chain length, from
-vinyl to -dec-9-enyl and types of inert groups iBu, Ph at the inorganic core) onto two polysiloxanes
containing various amount of Si-H units. The synthetic protocol, determined and confirmed by FT-IR
in situ and NMR analyses, was optimized to ensure complete Si-H consumption along with the
avoidance of side-products. A series of 20 new compounds with high yields and complete β-addition
selectivity was obtained and characterized by spectroscopic methods.

Keywords: polymers; hybrid materials; alkenylsilsesquioxanes; silsesquioxanes; polysiloxanes;
hydrosilylation; grafting

1. Introduction

Due to their hybrid nature, organosilicon compounds may be applied in the development of
advanced, multifunctional materials, owing to a combination of organic and inorganic segments.
A fundamental example of such derivatives based on Si-O-Si linkages is polysiloxanes, which are the
most widely recognized and studied organosilicon polymers. This is a large group of compounds with
a variety of architectures, and linear polymers are one of them. Another example is polysilsesquioxanes
which may be classified as polysiloxanes but consist of a general structural unit [RSiO3/2]n and
contain three main subgroups: amorphous, cage-type and ladder-structured polysilsesquioxanes.
The cage-type polysilsesquioxanes derivatives, commonly known as silsesquioxanes (SQs), for their
three-dimensional nanosized structures, have attracted considerable attention not only from the
synthetic perspective (tunable possibility for modification), but also for their application feature
(thermal stability) [1–4]. These systems, thanks to their unique properties, have influenced almost
all branches of science and have found numerous examples of applications also in everyday life,
e.g., optoelectronics (OLEDs) [5–7], dendrimers [8–11], catalysts [12,13], medicine and biochemistry
(drug delivery systems, dental applications) [14–16], lithium and fuel batteries, and conductive
matrices [17–20], food industries, cosmetics, and many more [21–31].
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The siloxane bond (Si-O-Si) in polysiloxanes is longer than the classical C-C-C bond in saturated
hydrocarbons and is characterized by average bond angle in a range of 110◦–143◦ Si-O-Si vs. the 109.5◦

angle in C-C-C bond. Because of this feature, the organic substituents at the siloxane skeleton in
polysiloxanes are at a greater distance than in hydrocarbons which in turn enables their better rotational
mobility affecting, i.a., the elasticity of polysiloxanes [30]. The significant perspectives for polysiloxanes
concern modification of their structure. It may be performed at the stage of polysiloxanes chain
formation, i.a., anionic ring-opening polymerization of cyclic siloxanes, or hydrolytic polycondensation
of two chloro/alkoxysilanes varying in functional groups [23,31–33]. On the other hand, it may be
achieved by modification of functional group present on the existing polysiloxane chain, mostly
via catalytic reactions [34–44], to gain co-polymers with precise and tailored properties [45–55].
Silsesquioxanes represent a versatile group of organosilicon species, with distinct and defined
structures, but the most popular are cage silsesquioxanes, especially cubic T8 [56,57]. Rigid inorganic,
Si-O-Si based core with organic substituents (reactive or inert) coordinated around the silicon vertices,
determine properties and potential application of these molecules [58–64]. The most significant branch
of SQs successful application is material chemistry as nanofillers and polymers modifiers [65–71].
Depending on the type of applied silsesquioxane and its amount in a polymer matrix, the resulting
nanocomposite material possesses improved properties, i.e., mechanical (increased elongation at
break, lower friction), optical (maintained optical transparency, reduced or removed the color of the
nanocomposite), thermal (increased thermal resistance and glass transition temperature, lowered
thermal conductivity), and others (e.g., improved the oxidation and corrosion resistance, reduced
flammability of the material) [72–86]. There are a few possibilities to introduce silsesquioxane molecules
into the polymer matrix (Figure 1). The synthetic protocol depends on the amount and type of the
reactive groups attached to the SQ core [56,87]. Silsesquioxanes with only inert groups may be
included into polymer matrix by simple blending (non-covalent network). On the contrary, when SQs
possess several functional groups they may act as cross-linking agents (at the copolymerization step or
post-modification of polymer). Finally, silsesquioxanes may be incorporated into the polymer matrix
as pendant groups (polymer grafting) at the post-modification stage of an already existing polymer
chain, which was exploited in this work.

Figure 1. Possible polymer–SQ architectures.

It should be emphasized that the reports on the modification of polysiloxanes with silsesquioxanes
are limited. These papers concern mostly octa-functionalized T8 silsesquioxanes that are used
in the modification of polysiloxanes in cross-linking processes resulting in the formation of
aerogels, membranes, ceramic precursors or silicone rubbers [88–93]. There are also few examples
of exploitation of other types of silsesquioxanes. Kuo et al. obtained highly thermally stable and
flexible polybenzoxazine nanocomposites after hydrosilylation of di-functional double-decker (DDSQ)
silsesquioxane with polydimethylsiloxane [94]. Kunitake et al. used a polycondensation reaction to
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obtain dimethylsiloxane polymers with embedded DDSQ cages of alternating chains length [95].
Naka et al. utilized incomplete-condensed silsesquioxane as monomers in platinum-catalyzed
hydrosilylation polymerization with siloxane to obtain polysiloxanes with SQs in the main
chain [96]. He et al. obtained organic/inorganic hybrids for coating by polymerization of
modified mono-carbinol terminated polymethylsiloxane with mono(methacryl)isobutyl silsesquioxane
(9.48, 17.33 and 23.93 wt % SQ content) [97]. Lee et al. applied mono(allyl)cyclohexyl silsesquioxane
for poly(ethylhydrosiloxane) grafting via hydrosilylation reaction in the presence of Karstedt’s
catalyst [98,99]. They used up to 25 mol % of SQ per Si–H group in polysiloxane (to ensure 100%
conversion of all Si–H group in polysiloxane they performed additional reaction with 1-octene or
allyl-oligo(ethylene oxide)). The obtained materials exhibited better mechanical and thermal property
than the parent polymer matrix with increasing content of SQ.

The idea of our research was to connect the polysiloxanes (PDMHS) and silsesquioxanes (SQs)
unique structures into one, resulting in the formation of hybrid, polymeric SQ-based systems. Hence,
a study was undertaken to design new types of hybrid materials that are based on polysiloxanes and
different silsesquioxanes as their modifiers and to provide an efficient procedure for their synthesis.
The idea of this research was to use Poly(dimethylsiloxane-co-methylhydrosiloxane) (PDMHS) with
reactive Si-H moiety as a hydrosilylating agent of mono(alkenyl)substituted T8 SQs. The crucial aspect
of this study was to investigate the possibility to use polysiloxanes varying in Si-H content (PS1-PS2)
and mono(alkenyl)substituted T8 SQs with different alkenyl chain lengths to achieve the complete
conversion of reactive groups of PDMHS. It was monitored with FTIR in situ apparatus (Figure 2).

Figure 2. Schematic depiction of Polysiloxanes grafted with Mono(alkenyl)Silsesquioxanes RT8@PS.

Moreover, as the hydrosilylation reaction may be accompanied by side-reactions, such as
dehydrogenative silylation, isomerization or olefin’s hydrogenation, additional studies were
undertaken to resolve this aspect using diverse Pt-based catalytic systems [100]. The final products,
i.e., the polysiloxanes grafted with mono(alkenyl)silsesquioxanes T8@PS were obtained as air-stable
organosilicons systems with diverse structures and a morphology dependent on the amount of the SQ
attached to the polysiloxane chain as well as the length of the alkyl linker between them.
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2. Materials and Methods

2.1. Materials

The chemicals were purchased from the following sources: Karstedt’s catalyst (platinum(0)-1,3-
divinyl-1,1,3,3-tetramethyldisiloxane complex (Pt2(dvs)3) solution in xylene with 2% of Pt), calcium
hydride, platinum(IV) oxide (surface area ≥ 75 m2/g) from Sigma-Aldrich (Saint Louis, MO, USA).
Sodium and benzophenone from Acros Organics (Geel, Belgium). Polysiloxanes: Cross-linker 101 (PS1,
4.3 mmol/g Si–H content) and 120 (PS2, 1.1 mmol/g Si-H content) from Evonik (Darmstadt, Germany).
((IPr*)Pt(dvds)) (IPr* = 1,3-bis{2,6-bis(diphenylmethyl)-4-methylphenyl}-imidazol-2-ylidene) and
Mono(alkenyl)functionalized silsesquioxanes were synthesized according to the literature [101,102].
Toluene, tetrahydrofuran (THF), chloroform-d, molecular sieves type 4 Å from Chempur (Piekary
Śląskie, Poland). Argon and liquid nitrogen were obtained from Linde Gas (Kraków, Poland).
All syntheses were conducted under argon atmosphere using standard Schlenk-line and vacuum
techniques. Toluene was dried over CaH2 and THF over Na with benzophenone prior to use and
stored under argon over type 4 Å molecular sieves.

2.2. Measurements

Nuclear magnetic resonance spectroscopy (NMR) measurements (1H, 13C, and 29Si NMR) were
conducted using spectrometers: Bruker Ultrashield 300 MHz and 400 MHz respectively (Faellanden,
Switzerland) with CDCl3 as a solvent. Chemical shifts are reported in ppm with reference to the
residual solvent signals (CHCl3) peaks for 1H and 13C and to TMS for 29Si.

Fourier transform-infrared (FT-IR) spectra were recorded on a Nicolet iS5 (Thermo Scientific,
Waltham, MA, USA) spectrophotometer equipped with a SPECAC Golden Gate, diamond ATR unit
with a resolution of 2 cm−1. In all cases, 16 scans were collected to record the spectra in a range of
4000–430 cm−1.

Real-time in situ FT-IR measurements were performed on a Mettler Toledo ReactIR 15
(Mettler-Toledo GmbH, Greifensee, Switzerland) equipped with a DS 6.3 mm AgXDiComp Fiber Probe
with a diamond sensor, and a Mercury Cadmium Telluride detector. For all spectra, 256 scans were
recorded with the resolution of 1 cm−1 in 1, 2, 5, and 10 min. intervals.

2.3. Synthetic Procedures

General Procedure for grafting of PDMHS with SQs via hydrosilylation reaction (1-5-iBuT8@PS1-2
and 1-5-PhT8@PS1-2 synthesis)

The procedure for the synthesis of 2-iBuT8@PS1 is described as an example.
2-iBuT8 (538 mg, 0.645 mmol), PS1 (150 mg, 0.645 mmol) and anhydrous toluene (3 mL) were

introduced into Schlenk reactor purged with argon, equipped with a magnetic stirrer and in situ FT-IR
probe. The reaction mixture was heated up to 90 ◦C and afterwards (Pt2(dvds)3) (Karstedt’s catalyst
2% solution in xylene, 0.736 µL, 6.45 × 10−8 mol) was added. Reactions were carried out until >99%
(or maximum) conversion of reactive Si-H in PS1, which was precisely controlled by in situ FT-IR
apparatus analyzing the disappearance of Si-H bands at υ = 900 cm−1 (24–96 h). After cooling it to
room temperature solvent was evaporated under a vacuum.

3. Results and Discussion

In our previous studies, we reported on an efficient synthetic protocol for the preparation
of a library of mono(alkenyl)silsesquioxanes varying in the length of the alkenyl chain and
also in the inert substituents (R = Et, iBu, Cy, iOc, Ph) at the silsesquioxane core [101].
These studies revealed the dependence of the thermal stability of this series of compounds
on the type of inert (R) and alkenyl group at SQs as well as the presence of the –OSi(Me2)–
spacer. In this paper, our goal was to synthesize a series of hybrid materials based on selected
PDMHS-Poly(dimethylsiloxane-co-methylhydrosiloxane)–PS1 (with 4.3 mmol/g Si-H content) and
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PS2 (with 1.1 mmol/g Si-H content) grafted with mono(alkenyl)substituted T8 SQs as pendant groups.
Basing on the scientific literature and our experience, we selected two types of mono(alkenyl)substituted
T8 SQs possessing two distinct inert substituents, i.e., iBu and Ph that exhibit different solubility as
well as thermal stability [101]. It is well known that the type of inert and functional groups determine
the physical and chemical properties of silsesquioxane [56,60,87] and as a consequence, may influence
the properties of polysiloxanes modified with these compounds.

The synthetic protocol was based on the general reaction presented in Scheme 1. Preliminary
tests were performed to optimize the reaction conditions in terms of the catalyst type
and its amount. The Pt-based catalytic systems, i.e., (Pt2(dvds)3), PtO2 and (Pt(IPr*)(dvds))
(IPr* = 1,3-bis{2,6-bis(diphenylmethyl)-4-methylphenyl}-imidazol-2-ylidene) were selected due to their
confirmed activity in the hydrosilylation reaction [52,103–107]. The selection of toluene was based on
the good solubility of all 1-5-RT8 SQs as well as PS1-2.

Scheme 1. General scheme for the hydrosilylation of mono(alkenyl)functionalized silsesquioxanes
(1-5RT8) with Poly(dimethylsiloxane-co-methylhydrosiloxane) (PS1-2).

The progress of the reaction was performed using FT-IR Mettler Toledo ReactIR 15 (Mettler-Toledo
GmbH, Greifensee, Switzerland) apparatus that provided on-line (in situ) monitoring reaction course,
due to the changes in the area of the bands ascribed to the stretching vibrations of Si–H bond within
time, i.e., at υ = 907 cm−1 (Figure 3). The final conversions of reagents we also confirmed by the
1H NMR.

Figure 3. Selected FT-IR spectrum area—illustration of Si-H band disappearance at υ = 907 cm−1,
recorded in real-time during hydrosilylation of 2-iBuT8 with PS1.

The reagents and catalyst stoichiometry was verified to ensure the highest Si-H conversion. This is
dependent on several factors, i.e., the type of inert R group at silsesquioxane (iBu, Ph), alkenyl chain
length and the presence/absence of siloxane (–OSiMe2-) spacer between the SQ core and alkenyl chain.
The optimized catalyst amount was established at 10−4 mol of (Pt2(dvds)3) for 1-5-iBuT8 (Table 1) and
10−3 mol of (Pt2(dvds)3) for 1-5PhT8 (Table 2) per one mol of Si-H in PS1-2. A higher amount of catalyst
necessary for 1-5-PhT8 with phenyl inert groups might be related to the bulkiness of the SQs core
affecting the limited access of 1-5-PhT8 to the reactive Si-H bond in PS1-2. Additionally, their electronic
impact may also be important.
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Table 1. The hydrosilylation reaction of PS1-2 with iBuT8
a.

Entry RT8 PS
[Pt]

(Amount per One
Si-H Group)

Conversion
of Si-H b [%]

Time
[h]

Selectivity
(a/b/c) d [%] Product

1
R = iBu;

x = 0; n = 0
1-iBuT8

1

[Pt2(dvds)3]

>50 96 100/0/0 1′-iBuT8@PS1 e

2 1 >99 c 48 100/0/0 1-iBuT8@PS1 e

3 2 >99 c 48 100/0/0 1-iBuT8@PS2 f

4 R = iBu;
x = 1; n = 0

2-iBuT8

1 >99 24 100/0/0 2-iBuT8@PS1 e

5 2 >99 24 100/0/0 2-iBuT8@PS2 f

6
R = iBu;

x = 1; n = 1
3-iBuT8

1 >94 24 87/13/0 3-iBuT8@PS1 e

7 2 >94 24 94/6/0 3-iBuT8@PS2 f

8
1

[(IPr*)Pt(dvds)] >92 72 85/15/0 3a-iBuT8@PS1 e

9 PtO2 >94 72 88/12/0 3b-iBuT8@PS1 e

10 R = iBu;
x = 1; n = 4

4-iBuT8

1

[Pt2(dvds)3]

>90 24 94/0/6 4-iBuT8@PS1 e

11 2 >87 24 90/0/10 4-iBuT8@PS2 f

12
R = iBu;

x = 1; n = 8
5-iBuT8

1 >89 24 86/0/14 5-iBuT8@PS1 e

13 2 >88 24 87/0/13 5-iBuT8@PS2 f

14
1

[(IPr*)Pt(dvds)] >80 48 86/0/14 5a-iBuT8@PS1 e

15 PtO2 >89 48 87/0/13 5b-iBuT8@PS1 e

a Reaction conditions: [HSi]:[1-5-iBuT8]:[Pt] = 1:1:10−4, for [Pt] = PtO2:10−2; toluene (0.057 M), 90 ◦C. b Conversion
of Si-H was determined by FT-IR in situ and 1H NMR analyses. c [Pt2(dvds)3] = 10−3. d Process selectivity
was confirmed by 1H, 13C and 29Si NMR (a-product of β-addiction; b-product of dehydrogenative silylation;
c-product of C=C bond isomerization). e State of compound: transparent solid, f State of compound: transparent
viscous solid.

Table 2. The hydrosilylation reaction of PS1-2 with PhT8
a.

Entry SQ PS
[Pt]

(Amount per One
Si-H Group)

Conversion
of Si-H b [%]

Time
[h]

Selectivity
(a/b/c) d [%] Product

1 R = Ph;
x = 0; n = 0

1-PhT8

1

[Pt2(dvds)3]

>99 48 100/0/0 1-PhT8@PS1 e

2 2 >99 48 100/0/0 1-PhT8@PS2 f

3 R = Ph
x = 1; n = 0

2-PhT8

1 >99 48 100/0/0 2-PhT8@PS1 e

4 2 >99 48 100/0/0 2-PhT8@PS2 f

5
R = Ph;

x = 1; n = 1
3-PhT8

1 >94 48 89/11/0 3-PhT8@PS1 e

6 2 >94 48 81/19/0 3-PhT8@PS2 f

7
1

[(IPr*)Pt(dvds)] >93 72 88/12/0 3a-PhT8@PS1 e

8 PtO2 >92 72 88/12/0 3b-PhT8@PS1 e

9 R = Ph;
x = 1; n = 4

4-PhT8

1

[Pt2(dvds)3]

>90 c 96 91/0/9 4′-PhT8@PS1 e

10 >91 24 93/0/7 4-PhT8@PS1 e

11 2 >86 24 89/0/11 4-PhT8@PS2 f

12

R = Ph;
x = 1; n = 8

5-PhT8

1
>88 c 96 90/0/10 5′-PhT8@PS1 e

13 >90 24 89/0/11 5-PhT8@PS1 e

14 2 >87 24 89/0/11 5-PhT8@PS2 f

15
1

[(IPr*)Pt(dvds)] >84 48 89/0/11 5a-PhT8@PS1 e

16 PtO2 >88 48 88/0/12 5b-PhT8@PS1 e

a Reaction conditions: [HSi]:[1-5-PhT8]:[Pt] = 1:1:10−3, for [Pt] = PtO2:10−2; toluene (0.057 M), 90 ◦C. b Conversion
of Si-H was determined by FT-IR in situ and 1H NMR analyses. c [Pt2(dvds)3] = 10−4. d Process selectivity
was confirmed by 1H, 13C and 29Si NMR (a-product of β-addiction; b-product of dehydrogenative silylation;
c-product of C=C bond isomerization). e State of compound: milky solid, f State of compound: milky viscous solid.
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In the case of vinyl moiety attached directly to the SQs core, i.e., the substrate without the siloxane
(-OSiMe2-) spacer (1-iBuT8) requires higher amount of catalyst, i.e., 10−3 mol of (Pt2(dvds)3) to ensure
full conversion of Si-H (Table 1, entries 2 and 3). It is also the steric aspect of the reagent. When 10−4 mol
of Karstedt’s catalyst was exploited, only 50% of Si-H conversion was noted, as well as even longer,
i.e., 96 h of reaction time. It might be also the aspect of steric hindrance and closure of the SQ core
preventing the effective addition of vinyl moiety into the coordination sphere of Pt (according to the
Chalk–Harrod mechanism) [100]. On the contrary, the hydrosilylation of 4-PhT8 and 5-PhT8 might
also be conducted with lower loading of the catalyst, i.e., 10−4 mol of (Pt2(dvds)3) (Table 2, entries 9
and 12), but it affects the total reaction time and an additional 72 h apart from 24 h which are required
for complete Si-H conversion.

The inert groups and type of alkenyl chain also impact the reaction time. The highest conversion
of PS1-2 grafted with iBuT8 was ensured within 24 h for almost all alkenyl chain lengths and for
Karstedt’s catalyst used. The exceptions are hydrosilylation reactions of PS1 and PS2 with 1-iBuT8

as the time evaluated for these reactions was 48 h. This might be explained with the absence of a
siloxane (-OSiMe2-) spacer between -vinyl group and SQ core. On the contrary, the reaction time of
polysiloxanes grafting with PhT8 significantly depends on alkenyl chain length. For -vinyl and -allyl
groups the evaluated time was 48 h in comparison to -hex-5-enyl and -dec-9-enyl groups as in their
case the established time was 24 h (both for Karstedt’s catalyst). Longer alkenyl chains are further
apart from the SQ core and bulky inert groups (Ph), which in consequence enables their better access
to Si-H bond.

It is worth mentioning that hydrosilylation may not proceed with a complete selectivity control
towards the desired product, i.e., in this system, β-addition product and side reactions may occur,
e.g., isomerization of olefin, α-addition product or dehydrogenative silylation [100,108,109]. For the
reactions with SQs with an alkenyl chain longer than -vinyl, i.e., for -allyl, -hex-5-enyl and -dec-9-enyl
derivatives (3-5RT8), a careful evaluation of spectroscopic analyses (Figures 4 and 5) revealed the
presence of by-products (Scheme 2). In the case of -allyl 3-iBu/PhT8, the formation of dehydrogenative
silylation by-product (Scheme 2–product b) was noted. Interestingly, the Pt-based complexes are not
particularly favorable towards the dehydrogenative silylation [110,111] in contrast to 8–9 group
of the periodic table, i.e., iron [112], rhodium [113], iridium [114] and cobalt [115] complexes,
specifically known for this selectivity [116,117]. This observation is reflected in NMR spectra (Figure 4)
and the appearance of new signals in 1H NMR derived from –CH=CH-Si-bond, i.e., 5.61–5.67,
6.11–6.23 ppm and in 13C NMR: 130.30, 143.60 ppm. They are shifted in comparison to the signals
of the terminal –CH=CH2 bond in the -allyl group (1H NMR: 4.84–4.91, 5.73–5.87 ppm and 13C
NMR: 113.54, 133.99 ppm respectively). However, for the -hex-5-enyl, i.e., 4-iBu/PhT8 and -dec-9-enyl,
i.e., 5-iBu/PhT8, the by-product of double bond isomerization in alkenyl moiety (Scheme 2–product c)
was noted. The analogical observation was previously reported for the hydrosilylation of 1,5-hexadiene
by chlorosilane by Saiki et al. [118]. In our case, the recorded 1H NMR spectrum revealed (Figure 5)
the appearance of new signals at 5.38–5.41 ppm and respective resonance lines: 125.48, 129.20 ppm
were also present at 13C NMR. They were assigned to the –CH=CH-CH3 moiety derived from double
bond isomerization in the alkenyl group attached to the SQs core. Moreover, since the isomerization of
C=C bond in the 4-5-RT8 is noted and these molecules are inactive in the hydrosilylation conditions,
there is a characteristic peak at 4.68 ppm in 1H NMR spectrum (Figure 5). This confirms the incomplete
conversion of Si-H due to the formation of a by-product (bond isomerization, Scheme 2–product c) of
hydrosilylation reaction.
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Figure 4. 1H and 13C NMR spectra of 3-iBuT8@PS1 after hydrosilylation reaction.

Figure 5. 1H and 13C NMR spectra’s of 5-iBuT8@PS1 after hydrosilylation reaction.
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Scheme 2. A route for the hydrosilylation of 3-5-RT8 by PS1 and PS2 and possible products in the
reaction mixtures.

For that reason, additional tests for grafting of the PS1 with SQs possessing longer alkenyl chains,
i.e., -allyl (Table 1–entry 8, 9-3a,b-iBuT8@PS1 and Table 2–entry 7, 8-3a,b-PhT8@PS1) and -dec-9-enyl
(Table 1–entry 14, 15-5a,b-iBuT8@PS1 and Table 2–entry 15, 16-5a,b-PhT8@PS1), with different
platinum catalysts, i.e., ((IPr*)Pt(dvds)) and PtO2 were performed. It was decided to use 10−4 mol of
((IPr*)Pt(dvds)) [105] and 10−2 mol of PtO2 [119–121] per 1 mol of Si-H group based on the literature.
The estimated time for the hydrosilylation of 3-iBu/PhT8 (72 h vs. 24 and 48 h) and 5-iBu/PhT8 (48 h
vs. 24 h) was significantly higher in comparison with [Pt2(dvds)3]. Moreover, these reaction times
did not ensure the complete conversion of Si-H bond. The selectivity of the process was also not
improved (Table 1 entry 8, 9 and 14–15; Table 2, entry 7–8 and 15–16). The NMR spectra of the
reactions mixtures resulting from these tests revealed the presence of by-products i.e., dehydrogenative
silylation (for 3-iBu/PhT8) and double bond isomerization (for 5-iBu/PhT8). Finally, additional tests
verifying the influence of reaction mixture concentration on the by-product formation were performed.
The hydrosilylation reaction of the selected 3-PhT8 by PS1 was performed in higher (0.17 M) and lower
(0.022 M) concentrations than set 0.057 M. However, equally for both tests, a product of dehydrogenative
silylation was observed in the post-reaction mixture (1H NMR).

The stacked FT-IR spectra of starting material (PS1-2), selected mono(alkenyl)silsesquioxane,
i.e., 2-iBuT8 and 2-PhT8 substrates and the resulting products: (2-iBu/PhT8@PS1-2) are depicted in
Figure 6 and Figure S1 (see ESI). Established reaction conditions resulted in the complete conversion
of reactive Si-H groups in PS1 and PS2, confirmed by the disappearance of respective band at
υ = 895–900 cm−1 and υ = 2130–2157 cm−1, marked in Figure 6 and Supplementary Figure S1.

For the respectively modified polysiloxanes, i.e., 2-iBuT8@PS1, 2-iBuT8@PS2, 2-PhT8@PS1 and
2-PhT8@PS2 (in Supplementary Figure S1), there are new bands on the spectra, characteristics of C-H
(stretching vibrations) methyl group from polysiloxane, as well as iBu moiety methylene groups in the
aliphatic chain at a range, ca. 2962–2870 cm−1 and additional bands at a range ca. 1259–1229 cm−1

attributed to the bending vibrations (doubled in the case of 2-iBuT8@PS1, 2-iBuT8@PS2) of the
aforementioned C-H groups. There are also aromatic C-H stretching bands at ca. 3074–3029 cm−1

and C=C (aromatic) at ca. 1594 and 1430 cm−1 characteristic of phenyl groups presence in the
case of 2-PhT8@PS1 and 2-PhT8@PS2. These FT-IR spectra confirm the formation of the desired
grafted polysiloxanes.
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Figure 6. Selected FT-IR spectra of polysiloxane PS1 and mono(vinyl)substituted iBuT8 (2-iBuT8),
and mono(vinyl)substituted PhT8 (2-PhT8) along with the obtained products 2-iBu/PhT8@PS1.

The crude products were isolated from the reaction mixture by evaporation of the solvent on
a vacuum. All obtained products are air-stable solids or waxy solids and can be synthesized on a
multigram scale. They are soluble in organic solvents like DCM, CHCl3, THF, acetone, and toluene,
but not in, e.g., methanol, MeCN, and hexane (for products with Ph groups). They were isolated
(Table S1) and characterized by means of spectroscopic (1H, 13C and 29Si NMR as well as FT-IR,
see Supplementary Materials) methods. Depending on the content of Si-H in the PS1 and PS2, as well
as the alkyl chain via which the SQs core is attached to the polysiloxane, and finally on the presence of
iBu or Ph inert substituents, the resulting 1-5RT8@PS1-2 differ in the morphology (Figure 7).

Figure 7. The images of the PS1 (a) and selected final, grafted polymers: 2-iBuT8@PS1 (b) and
5-PhT8@PS1 (c).

4. Conclusions

To conclude, we designed a synthetic pathway for an efficient PDMHS modification with selected
alkenylfunctionalized SQs (the alkenyl group with a different chain length, from -vinyl to -dec-9-enyl
and two types of inert groups- iBu, Ph at the inorganic core). We revealed a simple and efficient route to
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graft the polysiloxanes with the abovementioned RT8, based on Pt-catalyzed hydrosilylation reaction.
The synthetic protocol was optimized to ensure a complete Si-H consumption along with the avoidance
of side-products. As a result, we obtained 20 new compounds, characterized by spectroscopic methods
(1H, 13C, 29Si NMR, and FT IR; see Supporting Information). These compounds not previously been
described. Based on the literature concerning the directions of polysiloxanes application, these materials
seem to be potentially interesting to be used as protecting coatings. Further studies aiming at the
determination of the physical properties (thermal, mechanical, etc.) of these materials are planned to
be performed.

Supplementary Materials: Detailed analytical data with NMR spectra of all isolated products along with the
additional NMR spectra are available online at http://www.mdpi.com/1996-1944/13/21/4784/s1.
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