Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials
Abstract
:1. Introduction
2. Food Packaging
2.1. Packaging Waste in Food Industry
- Reusable packaging, e.g., glass which can be reused after cleaning.
- Recyclable packaging, e.g., paper which can be reprocessed and reused.
- Biodegradable packaging, e.g., cotton sacks which can break down into the environment without causing damage.
2.2. Biodegradable Food Packaging
Sustainable Food Packaging
3. Biopolymers
- directly extracted from biomass (for example polysaccharides such as starch or cellulose),
- produced by chemical synthesis using renewable biobased monomers (for example polylactic acid),
- produced by microorganisms or genetically modified bacteria (for example polyhydroxyalkonoates),
- and/or by chemical synthesis using both bio-derived monomers and petroleum-based monomers (for example poly(butylene succinate)).
3.1. Classification of Bioplastics
3.2. Bioplastic Market
3.3. Use of Biopolymers in Developed Countries
4. Polylactic Acid
4.1. Production of PLA
- Fermentation of carbohydrates such as starch. The bulk of PLA produced is from the crops corn and cassava which are renewable resources.
- Chemical synthesis uses ring opening polymerisation reactions to obtain high molecular weight polymers.
4.2. Lifecycle of PLA
4.3. PLA Properties of Interest to Food Industry
- Excellent transparency, which is one property of interest in food packaging.
- Permeability to carbon dioxide compared to that of oxygen (perm selectivity) is higher than that of most conventional fossil fuel-based plastics. This is particularly important in food packaging applications where high barrier to oxygen is required.
- 20 times better oxygen barrier properties than polystyrene (PS).
- Better mechanical performance that PS.
- Relatively good water resistance.
- Good chemical resistance to fats and oils.
- Better thermal processability compared to other bioplastics, as seen from its relatively high glass transition temperature and low melting temperature.
- Films seal well at temperatures lower than melting temperature.
- PLA films also show better ultraviolet light barrier properties than low density polyethylene (LDPE).
- In addition to being biodegradable, PLA can also be recycled or incinerated. Using steam or boiling water, PLA can be hydrolysed to lactic acid, leading to molecular recycling, allowing recycling of packaging materials.
4.4. Biodegradable Composites Based on PLA
4.5. Properties Required of Materials in Food Packaging
4.5.1. Thermal Properties
4.5.2. Mechanical Properties
4.5.3. Chemical Reactivity
4.5.4. Optical Properties
4.5.5. Gas Barrier Properties
4.5.6. Moisture Barrier Properties
4.5.7. Water Absorption
4.5.8. Durability
4.6. Biodegrable Packaging Influence on Food Products
4.7. Biodegradation Routes
4.7.1. Soil
4.7.2. Compost
4.7.3. Aquatic Environment
5. Outlook of Biobased Biodegradable Polymers
- In Zimbabwe, a total of 206 wild food plants were documented in one study, and from the findings, only fourteen popular food plants were identified with commercial potential [135].
- Another study in South Africa on the status of underutilised crops revealed that most are drought tolerant, nutrient dense, and possess the potential for success in addressing food security, climate change adaptation, and improving rural livelihoods. As such, the drive is to increase their production as well as prioritise them for future research, development, and innovation [136].
- In 2010, a study in Botswana revealed ongoing pilot farmer-based cultivation for selected threatened and indigenous species of medicinal and edible wild fruit plants for lucrative avenues for income generation as the world demand for plants as sources of drugs and novel foods increased [137].
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalil, H.A.; Davoudpour, Y.; Saurabh, C.K.; Hossain, M.S.; Adnan, A.; Dungani, R.; Paridah, M.; Sarker, M.Z.I.; Fazita, M.N.; Syakir, M. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Nurul, M.F.; Jayaraman, K.; Bhattacharyya, D.; Mohamad, M.H.; Saurabh, C.K.; Hussin, M.H.; HPS, A.K. Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—A review. Materials 2016, 9, 435. [Google Scholar] [CrossRef]
- Attaran, S.A.; Hassan, A.; Wahit, M.U. Materials for food packaging applications based on bio-based polymer nanocomposites: A review. J. Thermoplast. Compos. Mater. 2015, 30, 143–173. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Chiellini, E. Environmentally Compatible Food Packaging; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Ignatyev, I.A.; Thielemans, W.; Vander Beke, B. Recycling of polymers: A review. ChemSusChem 2014, 7, 1579–1593. [Google Scholar] [CrossRef]
- Muller, J.; Martínez, C.G.; Chiralt, A. Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Piergiovanni, L.; Limbo, S. Food Packaging Materials; Springer: Basel, Switzerland, 2016. [Google Scholar]
- De Kock, L.; Sadan, Z.; Arp, R.; Upadhyaya, P. A circular economy response to plastic pollution: Current policy landscape and consumer perception. S. Afr. J. Sci. 2020, 116, 1–2. [Google Scholar] [CrossRef]
- Muncke, J. Chemical Migration from Food Packaging to Food. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p. 285. [Google Scholar] [CrossRef]
- Jacob, J.; Lawal, U.; Thomas, S.; Valapa, R.B. Chapter 4-Biobased Polymer Composite from Poly (Lactic Acid): Processing, Fabrication, and Characterization for Food Packaging. In Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications; Zhang, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–115. [Google Scholar] [CrossRef]
- Marsh, K.S. Polymer and Plastic Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, G.M.; Irshad, A.; Raghunath, B.; Rajarajan, G. Waste Management in Food Packaging Industry. In Integrated Waste Management in India; Springer: Cham, Switzerland, 2016; pp. 265–277. [Google Scholar]
- Payne, J.; McKeown, P.; Jones, M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Dikky, I.; Stevia, S. Replacing plastic: An assessment of new material for food production package to re-engineer packaging industry based on multi-criteria analyses. In Proceedings of the First ASEAN Business, Environment and Technology Symposium (ABEATS 2019), Bogor, Indonesia, 2–3 December 2019; pp. 20–22. [Google Scholar]
- European_Commission. Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: https://ec.europa.eu/environment/waste/framework/ (accessed on 15 April 2020).
- Porta, R.; Sabbah, M.; Di Pierro, P. Biopolymers as food packaging materials. Int. J. Mol. Sci. 2020, 21, 4942. [Google Scholar] [CrossRef] [PubMed]
- Havstad, M.R. Chapter 5—Biodegradable Plastics. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 97–129. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kasaveti, A. 7-Consumer Attitude to Food Packaging and the Market for Environmentally Compatible Products. In Environmentally Compatible Food Packaging; Chiellini, E., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 161–181. [Google Scholar] [CrossRef]
- Ashok, A.; Rejeesh, C.; Renjith, R. Biodegradable polymers for sustainable packaging applications: A review. IJBB 2016, 1, 11. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Farahani, M.F.; O’Hearn, P.; Xiao, H.; Ocampo, H. An overview of bio-based polymers for packaging materials. J. Bioresour. Bioprod. 2016, 1, 106–113. [Google Scholar]
- Grujić, R.; Vujadinović, D.; Savanović, D. Biopolymers as Food Packaging Materials. In Advances in Applications of Industrial Biomaterials; Springer: Cham, Switzerland, 2017; pp. 139–160. [Google Scholar]
- Babu, R.P.; O’connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Imam, S.; Glenn, G.; Chiellini, E. Utilization of Biobased Polymers in Food Packaging: Assessment of Materials, Production and Commercialization. In Emerging Food Packaging Technologies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 435–468. [Google Scholar]
- Scarfato, P.; Di Maio, L.; Incarnato, L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J. Appl. Polym. Sci. 2015, 132, 13. [Google Scholar] [CrossRef]
- Aliotta, L.; Gigante, V.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A. Evaluation of mechanical and interfacial properties of bio-composites based on poly (lactic acid) with natural cellulose fibers. Int. J. Mol. Sci. 2019, 20, 960. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Lee, D.; Min, S.; Chung, M. Eco-Design of Food and Beverage Packaging. In Emerging Food Packaging Technologies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 361–379. [Google Scholar]
- Hottle, T.; Bilec, M.; Landis, A. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013, 1907, 1898–1907. [Google Scholar] [CrossRef]
- Bossu, J.; Reis, M.; Le Moigne, N.; Coussy, H.A.; Guillard, V. GLOPACK Project–New generation of bio-based and fully degradable composite food-trays made of biopolymers and fibresfrom agrowastes. Materials optimization for upscaled productive solutions. In Proceedings of the Heraklion 2019-7th International Conference on Sustainable Solid Waste Management, Crete Island, Greece, 26–28 June 2019. [Google Scholar]
- Robertson, G.L. Definitions, Functions, Attributes and Environments of Food Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food packaging: A comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [Green Version]
- Hu, B. Biopolymer-Based Lightweight Materials for Packaging Applications. In Lightweight Materials from Biopolymers and Biofibers; ACS Publications: Washington, DC, USA, 2014; pp. 239–255. [Google Scholar]
- Nesic, A.; Castillo, C.; Castaño, P.; Barjas, G.C.; Serrano, J. Chapter 8—Bio-Based Packaging Materials. In Biobased Products and Industries; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–309. [Google Scholar] [CrossRef]
- Dicker, M.P.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Pawar, P.; Purwar, A.H. Biodegradable polymers in food packaging. Am. J. Eng. Res. 2013, 2, 151–164. [Google Scholar]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.; Mahanti, N.K. Application of biodegradable polymers in food packaging industry: A comprehensive review. J. Packag. Technol. Res. 2018, 3, 77–96. [Google Scholar] [CrossRef]
- Jabeen, N.; Majid, I.; Nayik, G.A. Bioplastics and food packaging: A review. Cogent Food Agric. 2015, 1, 1117749. [Google Scholar] [CrossRef]
- Gabor, D.; Tita, O. Biopolymers used in food packaging: A review. Acta Univ. Cinbinesis Ser. E Food Technol. 2012, 16, 17. [Google Scholar]
- Byun, Y.; Kim, Y.T. Chapter 142—Bioplastics for Food Packaging: Chemistry and Physics. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 353–368. [Google Scholar] [CrossRef]
- Yadav, A.; Mangaraj, S.; Singh, R.; Kumar, N.; Arora, S. Biopolymers as packaging material in food and allied industry. IJCS 2018, 6, 2411–2418. [Google Scholar]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Fabra, M.J.; Rubio, A.L.; Lagaron, J.M. 15—Biopolymers for Food Packaging Applications. In Smart Polymers and their Applications; Aguilar, M.R., San Román, J., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 476–509. [Google Scholar] [CrossRef]
- Adeyeye, O.; Sadiku, E.R.; Reddy, A.B.; Ndamase, A.S.; Makgatho, G.; Sellamuthu, P.S.; Perumal, A.B.; Nambiar, R.B.; Fasiku, V.O.; Ibrahim, I.D. The Use of Biopolymers in Food Packaging. In Green Biopolymers and Their Nanocomposites; Springer: Singapore, 2019; pp. 137–158. [Google Scholar]
- Krepsztul, J.W.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V.K. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.; Asim, M.; Saba, N. Natural fiber reinforced polylactic acid composites: A review. Polym. Compos. 2018, 40, 446–463. [Google Scholar] [CrossRef]
- Gonçalves de Moura, I.; de Sá, A.V.; Abreu, A.S.L.M.; Alves Machado, A.V. 7—Bioplastics from Agro-Wastes for Food Packaging Applications. In Food Packaging; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 223–263. [Google Scholar] [CrossRef]
- European Bioplastics. What are Bioplastics? Available online: http://docs.european-bioplastics.org/publications/fs/EuBP_FS_What_are_bioplastics.pdf (accessed on 12 March 2020).
- Mallegni, N.; Phuong, T.V.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A. Poly (lactic acid) (PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials 2018, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Penkhrue, W.; Khanongnuch, C.; Masaki, K.; Pathom-aree, W.; Punyodom, W.; Lumyong, S. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J. Microbiol. Biotechnol. 2015, 31, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, G.; Ratna Prasad, A.V.; Gupta, A.V.S.S.K.S. Soil degradation characteristics of short sisal/PLA composites. Mater. Today Proc. 2019, 18, 1–7. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Enhancing the biodegradation rate of poly(lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polym. Degrad. Stab. 2018, 154, 46–54. [Google Scholar] [CrossRef]
- Guillermo, A.; Noa, S. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 2020, 115364. [Google Scholar] [CrossRef]
- Raheem, D. Application of plastics and paper as food packaging materials—An overview. Emir. J. Food Agric. 2013, 25, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Biron, M. Thermoplastics and Thermoplastic Composites; William Andrew: Norwich, NY, USA, 2018; p. 1164. [Google Scholar]
- Vilela, C.; Sousa, A.F.; Fonseca, A.C.; Serra, A.C.; Coelho, J.F.; Freire, C.S.; Silvestre, A.J. The quest for sustainable polyesters–insights into the future. Polym. Chem. 2014, 5, 3119–3141. [Google Scholar] [CrossRef]
- European Bioplastics. Bioplastics Facts and Figures. Available online: https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf (accessed on 21 May 2020).
- Available online: https://www.european-bioplastics.org/news/publications/#MarketData (accessed on 10 March 2020).
- Europe Bioplastics. Global Production Capacities of Bioplastics 2019–2024; Europe Bioplastics: Berlin, Germany, 2019. [Google Scholar]
- Cecchi, T.; Giuliani, A.; Iacopini, F.; Santulli, C.; Sarasini, F.; Tirillò, J. Unprecedented high percentage of food waste powder filler in poly lactic acid green composites: Synthesis, characterization, and volatile profile. Environ. Sci. Pollut. Res. 2019, 26, 7263–7271. [Google Scholar] [CrossRef]
- Kosior, E.; Mitchell, J. Chapter 6—Current Industry Position on Plastic Production and Recycling. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–162. [Google Scholar] [CrossRef]
- Mohanty, A.; Misra, M.A.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Michelin, M.; Vicente, A.A.; Teixeira, J.A.; Cerqueira, M.Â. Lignocellulosic Materials and Their Use in Bio-Based Packaging; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Fidan, I.; Imeri, A.; Gupta, A.; Hasanov, S.; Nasirov, A.; Elliott, A.; Alifui-Segbaya, F.; Nanami, N. The trends and challenges of fiber reinforced additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 102, 1801–1818. [Google Scholar] [CrossRef]
- Ashok, B.; Naresh, S.; Reddy, K.O.; Madhukar, K.; Cai, J.; Zhang, L.; Rajulu, A.V. Tensile and thermal properties of poly (lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 2014, 19, 245–255. [Google Scholar] [CrossRef]
- Faludi, G.; Dora, G.; Imre, B.; Renner, K.; Móczó, J.; Pukánszky, B. PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef] [Green Version]
- Dahman, Y. Poly (Lactic Acid): Green and Sustainable Plastics. Ferment. Technol. 2014, 2, e121. [Google Scholar] [CrossRef] [Green Version]
- Popa, E.E.; Rapa, M.; Popa, O.; Mustatea, G.; Popa, V.I.; Mitelut, A.C.; Popa, M.E. Polylactic Acid/Cellulose Fibres Based Composites for Food Packaging Applications. Mater. Plast 2017, 54, 673–677. [Google Scholar] [CrossRef]
- Kumar, N.; Kaur, P.; Bhatia, S. Advances in bio-nanocomposite materials for food packaging: A review. Nutr. Food Sci. 2017, 47, 591–606. [Google Scholar] [CrossRef]
- Silva, T.F.D.; Menezes, F.; Montagna, L.S.; Lemes, A.P.; Passador, F.R. Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites. Mater. Sci. Eng. B 2019, 251, 114441. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly (lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Qin, L.; Qiu, J.; Liu, M.; Ding, S.; Shao, L.; Lü, S.; Zhang, G.; Zhao, Y.; Fu, X. Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem. Eng. J. 2011, 166, 772–778. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Feng, H.; Zhang, M.; Lei, L.; Wu, X. Improvement of tensile and thermal properties of poly (lactic acid) composites with admicellar-treated rice straw fiber. Chem. Eng. J. 2011, 173, 659–666. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review. Polym. Degrad. Stab. 2017, 137, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Benninga, H. A history of Lactic Acid Making: A Chapter in the History of Biotechnology; Springer Science & Business Media: Berlin, Germany, 1990; Volume 11. [Google Scholar]
- Song, J.; Kay, M.; Coles, R. Bioplastics. In Food and Beverage Packaging Technology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 295–319. [Google Scholar]
- Darie-Niţă, R.N.; Vasile, C.; Irimia, A.; Lipşa, R.; Râpă, M. Evaluation of some eco-friendly plasticizers for PLA films processing. J. Appl. Polym. Sci. 2016, 133, 11. [Google Scholar] [CrossRef]
- Hiebel, M.; Maga, D.; Kabasci, S.; Lieske, A.; Jesse, K.; Westphalen, C.; Bauer, J.; Kroll, L.; Ringberg, R.; Hartmann, T. PLA in the Waste Stream; Federal Ministry of Food and Agriculture Germany: Bonn, Germany, 2017. [Google Scholar]
- Badia, J.D.; Gil-Castell, O.; Ribes-Greus, A. Long-term properties and end-of-life of polymers from renewable resources. Polym. Degrad. Stab. 2017, 137, 35–57. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Geueke, B.; Wagner, C.C.; Muncke, J. Food contact substances and chemicals of concern: A comparison of inventories. Food Addit. Contam. Part A 2014, 31, 1438–1450. [Google Scholar] [CrossRef]
- Muncke, J. Hazards of food contact material: Food packaging contaminants. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 430–437. [Google Scholar] [CrossRef]
- Panseri, S.; Martino, P.A.; Cagnardi, P.; Celano, G.; Tedesco, D.; Castrica, M.; Balzaretti, C.; Chiesa, L.M. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. Food Chem. 2018, 249, 22–29. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; Ragaert, K.; de Meulenaer, B.; Devlieghere, F.; Cardon, L. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. J. Appl. Polym. Sci. 2015, 132, 17. [Google Scholar] [CrossRef]
- Wilfred, O.; Tai, H.; Marriott, R.; Liu, Q.; Tverezovskiy, V.; Curling, S.; Tai, H.; Fan, Z.; Wang, W. Biodegradation of polylactic acid and starch composites in compost and soil. Int. J. Nano Res. 2018, 1, 1–11. [Google Scholar]
- Pereira, P.H.F.; Rosa, M.D.F.; Cioffi, M.O.H.; Benini, K.C.C.D.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R. Vegetal fibers in polymeric composites: A review. Polímeros 2015, 25, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.S.; Singh, L.P.; Kumar, P.; Singh, S. Green composites: A review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 2020, 33, 1145–1171. [Google Scholar] [CrossRef]
- Hammiche, D.; Boukerrou, A.; Azzeddine, B.; Guermazi, N.; Budtova, T. Characterization of polylactic acid green composites and its biodegradation in a bacterial environment. Int. J. Polym. Anal. Charact. 2019, 24, 236–244. [Google Scholar] [CrossRef]
- Madhuri, K.S.; Rao, H.R.; Reddy, B.C. Experimental investigation on the mechanical properties of hardwickia binata fibre reinforced polymer composites. Mater. Today Proc. 2018, 5, 19899–19907. [Google Scholar] [CrossRef]
- Masmoudi, F.; Bessadok, A.; Dammak, M.; Jaziri, M.; Ammar, E. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environ. Sci. Pollut. Res. 2016, 23, 20904–20914. [Google Scholar] [CrossRef]
- Cichorek, M.; Piorkowska, E.; Krasnikova, N. Stiff biodegradable polylactide composites with ultrafine cellulose filler. J. Polym. Environ. 2017, 25, 74–80. [Google Scholar] [CrossRef]
- Pandit, P.; Nadathur, G.T.; Maiti, S.; Regubalan, B. Functionality and Properties of Bio-Based Materials. In Bio-Based Materials for Food Packaging; Springer: Singapore, 2018; pp. 81–103. [Google Scholar]
- Verdejo, M.F.; Bumbaris, E.; Burgstaller, C.; Bismarck, A.; Lee, K.-Y. Plant fibre-reinforced polymers: Where do we stand in terms of tensile properties? Int. Mater. Rev. 2017, 62, 441–464. [Google Scholar] [CrossRef]
- Sydow, Z.; Bieńczak, K. The overview on the use of natural fibers reinforced composites for food packaging. J. Nat. Fibers 2018, 16, 1189–1200. [Google Scholar] [CrossRef]
- Saccani, A.; Sisti, L.; Manzi, S.; Fiorini, M. PLA composites formulated recycling residuals of the winery industry. Polym. Compos. 2019, 40, 1378–1383. [Google Scholar] [CrossRef]
- Totaro, G.; Sisti, L.; Fiorini, M.; Lancellotti, I.; Andreola, F.N.; Saccani, A. Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. J. Polym. Environ. 2019, 27, 1488–1496. [Google Scholar] [CrossRef]
- Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A.; Marino, F. Cellulose extracted from rice husk as filler for poly (lactic acid): Preparation and characterization. Cellulose 2014, 21, 1813–1821. [Google Scholar] [CrossRef]
- Liu, R.; Peng, Y.; Cao, J. Thermal stability of organo-montmorillonite-modified wood flour/poly (lactic acid) composites. Polym. Compos. 2016, 37, 1971–1977. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Gu, J.; Tan, H. Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour. Colloids Surf. B Biointerfaces 2017, 159, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 310–319. [Google Scholar] [CrossRef]
- Papadopoulou, E.L.; Paul, U.C.; Tran, T.N.; Suarato, G.; Ceseracciu, L.; Marras, S.; d’Arcy, R.; Athanassiou, A. sustainable active food packaging from poly(lactic acid) and cocoa bean shells. ACS Appl. Mater. Interfaces 2019, 11, 31317–31327. [Google Scholar] [CrossRef]
- Berk, Z. Chapter 27—Food Packaging. In Food Process Engineering and Technology, 2nd ed.; Berk, Z., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 621–636. [Google Scholar] [CrossRef]
- Kumar, Y.; Shukla, P.; Singh, P.; Prabhakaran, P.; Tanwar, V. Bio-plastics. A perfect tool for eco-friendly food packaging: A Review. J. Food Prod. Dev. Packag. 2014, 1, 1–6. [Google Scholar]
- Packaging, A. Plastics Comparison Chart. Available online: http://www.alphap.com/bottle-basics/plastics-comparison-chart.php (accessed on 24 September 2020).
- Omnexus. Glass Transition Temperature Values of Several Plastics. Available online: https://omnexus.specialchem.com/polymer-properties/properties/glass-transition-temperature (accessed on 24 September 2020).
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef]
- Gnanasekaran, D. Green Biopolymers and Their Nanocomposites; Springer: Singapore, 2019. [Google Scholar]
- Ivonkovic, A.; Zeljko, K.; Talic, S.; Lasic, M. Biodegradable packaging in the food industry. J. Food Saf. Food Qual. 2017, 68, 26–38. [Google Scholar]
- Zasadzińska, A.G.; Klapiszewski, Ł.; Borysiak, S.; Jesionowski, T. Thermal and mechanical properties of silica-lignin/polylactide composites subjected to biodegradation. Materials 2018, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Dhar, P.; Gaur, S.S.; Soundararajan, N.; Gupta, A.; Bhasney, S.M.; Milli, M.; Kumar, A.; Katiyar, V. Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: Influence of filler type on thermomechanical, rheological, and barrier properties. Ind. Eng. Chem. Res. 2017, 56, 4718–4735. [Google Scholar] [CrossRef]
- Dukalska, L.; Ungure, E.; Augspole, I.; Muizniece-Brasava, S.; Levkane, V.; Tatjana, R.; Krasnova, I. Evaluation of the influence of various biodegradable packaging materials on the quality and shelf life of different food products. Rural Sustain. Res. 2013, 30, 20–34. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Chapter 8—Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 271–306. [Google Scholar] [CrossRef]
- Rapisarda, M.; Patanè, C.; Pellegrino, A.; Malvuccio, A.; Rizzo, V.; Muratore, G.; Rizzarelli, P. Compostable polylactide and cellulose based packaging for fresh-cut cherry tomatoes: Performance evaluation and influence of sterilization treatment. Materials 2020, 13, 3432. [Google Scholar] [CrossRef] [PubMed]
- Kamthai, S.; Magaraphan, R. Development of an active polylactic acid (PLA) packaging film by adding bleached bagasse carboxymethyl cellulose (CMCB) for mango storage life extension. Packag. Technol. Sci. 2019, 32, 103–116. [Google Scholar] [CrossRef]
- Vilarinho, F.; Sanches Silva, A.; Vaz, M.F.; Farinha, J.P. Nanocellulose in green food packaging. Crit. Rev. Food Sci. Nutr. 2018, 58, 1526–1537. [Google Scholar] [CrossRef]
- Suwanamornlert, P.; Kerddonfag, N.; Sane, A.; Chinsirikul, W.; Zhou, W.; Chonhenchob, V. Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf Life 2020, 25, 100515. [Google Scholar] [CrossRef]
- Agyeman, S.; Obeng-Ahenkora, N.K.; Assiamah, S.; Twumasi, G. Exploiting recycled plastic waste as an alternative binder for paving blocks production. Case Stud. Constr. Mater. 2019, 11, e00246. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Degli Innocenti, F.; Valenti, G.; Rapisarda, M. Biodegradation of Green Polymer Composites: Laboratory Procedures and Standard Test Methods. In Advanced Applications of Bio-Degradable Green Composites; Materials Research Forum LLC: Millersville, PA, USA, 2020; pp. 1–44. [Google Scholar]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice; CRC press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Thomas, S.; Mishra, R.K.; Asiri, A.M. Sustainable Polymer Composites and Nanocomposites; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Righetti, M.C.; Cinelli, P.; Mallegni, N.; Massa, C.A.; Aliotta, L.; Lazzeri, A. Thermal, Mechanical, Viscoelastic and Morphological Properties of Poly (lactic acid) based Biocomposites with Potato Pulp Powder Treated with Waxes. Materials 2019, 12, 990. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.K.; Vivekanandhan, S.; Pin, J.-M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, N.G.; Cree, D.E. Mechanical properties of poly (lactic acid) composites reinforced with CaCO 3 eggshell based fillers. MRS Adv. 2017, 2, 2545–2550. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.C.; Mucina, L.; Powrie, L.W. The South African national vegetation database: History, development, applications, problems and future. S. Afr. J. Sci. 2012, 108, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Welcome, A.; Van Wyk, B.-E. An inventory and analysis of the food plants of Southern Africa. S. Afr. J. Bot. 2019, 122, 136–179. [Google Scholar] [CrossRef]
- Shava, S. Research on indigenous knowledge and its application: A case of wild food plants of Zimbabwe. S. Afr. J. Environ. Educ. 2005, 22, 73–86. [Google Scholar]
- Mabhaudhi, T.; Chimonyo, V.G.; Modi, A.T. Status of underutilised crops in South Africa: Opportunities for developing research capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef] [Green Version]
- Motlhanka, D.M.; Makhabu, S.W. Medicinal and edible wild fruit plants of Botswana as emerging new crop opportunities. J. Med. Plants Res. 2011, 5, 1836–1842. [Google Scholar]
- Maroyi, A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J. Ethnobiol. Ethnomedicine 2017, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
1. Filler | 2. Composite Fabrication Process | 3. Observation | 4. Reference |
---|---|---|---|
Hemp fibres | Twin extruder, compression and injection moulding |
| [107] |
Fine grain filler of native cellulose | Melt-mixing |
| [98] |
Ceramic food waste from grinding egg shells and mussel shells | Melt-mixing |
| [66] |
Silver skin (waste from roasting coffee beans) | Melt-mixing |
| [103] |
Waste from wine production (grape skins, seeds and stalk fragments) | Molding |
| [102] |
Cocoa bean shells | Solution casting |
| [108] |
Property/Polymer | LDPE | PET | PLA | PP | PS |
---|---|---|---|---|---|
Strength (MPa) | 10–12 | 55–79 | 37–66 | 15–27 | 24–60 |
Elongation at Break (%) | 300–500 | 15–165 | 0.5–9.2 | 100–600 | 1.6–2.5 |
Oxygen barrier (permeation at 30 °C [*10−10 cm3(STP)·cm/cm2·S·cm Hg]) | 6.9 | 0.04 | 3.3 | 1.5 | 2.6 |
Moisture vapour transmission rate (g-mil/10in.2/24 h) | 1.0–1.5 | 2 | 18–22 | 0.5 | 10 |
Water absorbance (%) | 0.005–0.015 | 0.1–0.2 | 3.1 | 0.01–0.1 | 0.01–0.4 |
Thermal properties [Glass Transition Temperature-Tg (°C)] | −110 | 73 | 55 | −20 | 90 |
Transparency (Clarity) | High | Excellent | High | Poor | Excellent |
Carbon dioxide barrier (permeation) | 28 | 0.2 | 10.2 | 5.3 | 10.5 |
Chemical resistance | Good | Good | Poor | Good | Good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. https://doi.org/10.3390/ma13214994
Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials. 2020; 13(21):4994. https://doi.org/10.3390/ma13214994
Chicago/Turabian StyleNcube, Lindani Koketso, Albert Uchenna Ude, Enoch Nifise Ogunmuyiwa, Rozli Zulkifli, and Isaac Nongwe Beas. 2020. "Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials" Materials 13, no. 21: 4994. https://doi.org/10.3390/ma13214994
APA StyleNcube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials, 13(21), 4994. https://doi.org/10.3390/ma13214994