Advancement of Mechanical Properties of Nickel-Titanium Rotary Endodontic Instruments by Spring Machining on the File Shaft
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walia, H.; Brantley, W.A.; Gerstein, H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J. Endod. 1988, 14, 346–351. [Google Scholar] [CrossRef]
- Parashos, P.; Messer, H.H. Rotary NiTi instrument fracture and its consequences. J. Endod. 2006, 32, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel-titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Yum, J.; Cheung, G.S.; Park, J.K.; Hur, B.; Kim, H.C. Torsional strength and toughness of nickel-titanium rotary files. J. Endod. 2011, 37, 382–386. [Google Scholar] [CrossRef]
- Cheung, G.S.P. Instrument fracture: Mechanisms, removal of fragments, and clinical outcomes. Endod. Top. 2009, 16, 1–26. [Google Scholar] [CrossRef]
- Ye, J.; Gao, Y. Metallurgical characterization of M-wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J. Endod. 2012, 38, 105–107. [Google Scholar] [CrossRef]
- Ha, J.H.; Kim, S.K.; Cohenca, N.; Kim, H.C. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. J. Endod. 2013, 39, 389–393. [Google Scholar] [CrossRef]
- Zhou, H.M.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.F.; Haapasalo, M. Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. J. Endod. 2012, 38, 1535–1540. [Google Scholar] [CrossRef]
- Goo, H.J.; Kwak, S.W.; Ha, J.H.; Pedullà, E.; Kim, H.C. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J. Endod. 2017, 43, 1872–1877. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Qian, W.; Abtin, H.; Gao, Y.; Haapasalo, M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J. Endod. 2011, 37, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Pedullà, E.; Lo Savio, F.; Boninelli, S.; Plotino, G.; Grande, N.M.; La Rosa, G.; Rapisarda, E. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J. Endod. 2016, 42, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.S.; Darvell, B.W. Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int. Endod. J. 2007, 40, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Isik, V.; Kwak, S.W.; Abu-Tahun, I.H.; Ha, J.H.; Kayahan, M.B.; Kim, H.C. Effect of shaft length on the torsional resistance of rotary nickel-titanium instruments. J. Endod. 2020, 46, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Lee, C.J.; Versluis, A.; Kim, B.M.; Lee, W.; Kim, H.C. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J. Endod. 2011, 37, 1283–1286. [Google Scholar] [CrossRef]
- Versluis, A.; Kim, H.C.; Lee, W.; Kim, B.M.; Lee, C.J. Flexural stiffness and stresses in nickel-titanium rotary files for various pitch and cross-sectional geometries. J. Endod. 2012, 38, 1399–1403. [Google Scholar] [CrossRef]
- Palma, P.J.; Messias, A.; Cerqueira, A.R.; Tavares, L.D.; Caramelo, F.; Roseiro, L.; Santos, J.M. Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology. 2019, 107, 324–332. [Google Scholar] [CrossRef]
- Webber, M.; Piasecki, L.; Jussiani, E.I.; Andrello, A.C.; Dos Reis, P.J.; Azim, K.A.; Azim, A.A. Higher speed and no glidepath: A new protocol to increase the efficiency of XP Shaper in curved canals—An in vitro study. J. Endod. 2020, 46, 103–109. [Google Scholar] [CrossRef]
- Gagliardi, J.; Versiani, M.A.; de Sousa-Neto, M.D.; Plazas-Garzon, A.; Basrani, B. Evaluation of the shaping characteristics of ProTaper Gold, ProTaper NEXT, and ProTaper Universal in curved canals. J. Endod. 2015, 41, 1718–1724. [Google Scholar] [CrossRef]
- Alqedairi, A.; Alfawaz, H.; Abualjadayel, B.; Alanazi, M.; Alkhalifah, A.; Jamleh, A. Torsional resistance of three ProTaper rotary systems. BMC Oral Health 2019, 19, 124. [Google Scholar] [CrossRef]
- American Dental Association Council on Dental Materials, Instruments and Equipment. Revised American National Standards Institute/American Dental Association Specification No. 28 for Root Canal Files and Reamers, Type K, and No. 58+ for Root Canal Files, Type H (Hedstrom). J. Am. Dent. Assoc. 1989, 118, 239–240. [Google Scholar] [CrossRef]
- ISO Standards ISO 3630-3631. Dentistry—Root-Canal Instruments: Part1—General Requirements and Test Methods; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- Pasqualini, D.; Mollo, L.; Scotti, N.; Cantatore, G.; Castellucci, A.; Migliaretti, G.; Berutti, E. Postoperative pain after manual and mechanical glide path: A randomized clinical trial. J. Endod. 2012, 38, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, D.; Guntermann, A.; Kim, S.K.; Stachniss, V. Root canal shaping with manual stainless steel files and rotary Ni-Ti files performed by students. Int. Endod. J. 2003, 36, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Aydın, Z.U.; Keskin, N.B.; Özyürek, T.; Geneci, F.; Ocak, M.; Çelik, H.H. Microcomputed assessment of transportation, centering ratio, canal area, and volume increase after single-file rotary and reciprocating glide path instrumentation in curved root canals: A laboratory study. J. Endod. 2019, 45, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Uygun, A.D.; Kol, E.; Topcu, M.K.; Seckin, F.; Ersoy, I.; Tanriver, M. Variations in cyclic fatigue resistance among ProTaper Gold, ProTaper Next and ProTaper Universal instruments at different levels. Int. Endod. J. 2016, 49, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.M.; Zheng, Y.F.; Peng, B.; Haapasalo, M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.W.; Lee, C.J.; Kim, S.K.; Kim, H.C.; Ha, J.H. Comparison of screw-in forces during movement of endodontic files with different geometries, alloys, and kinetics. Materials 2019, 12, 1506. [Google Scholar] [CrossRef] [Green Version]
- Hieawy, A.; Haapasalo, M.; Zhou, H.; Wang, Z.J.; Shen, Y. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J. Endod. 2015, 41, 1134–1138. [Google Scholar] [CrossRef]
- Peters, O.A.; Barbakow, F. Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int. Endod. J. 2002, 35, 379–389. [Google Scholar] [CrossRef]
- Bahia, M.G.; Buono, V.T. Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 249–255. [Google Scholar] [CrossRef]
- Miyai, K.; Ebihara, A.; Hayashi, Y.; Doi, H.; Suda, H.; Yoneyama, T. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments. Int. Endod. J. 2006, 39, 119–126. [Google Scholar] [CrossRef]
Non-Spring (NS) | Spring (S) | ||
---|---|---|---|
NCF * | SPR * | 1348 ± 196 | 1810 ± 410 |
PTN * | 1618 ± 283 | 2065 ± 239 | |
PTG * | 2099 ± 147 | 2623 ± 284 | |
Fracture Fragment Length (mm) | SPR | 1.87 ± 0.18 | 1.84 ± 0.21 |
PTN | 3.59 ± 0.40 | 3.48 ± 0.25 | |
PTG | 3.46 ± 0.62 | 3.20 ± 0.16 |
Non-Spring (NS) | Spring (S) | ||
---|---|---|---|
Toughness * (°·Ncm) | SPR * | 513.82 ± 45.86 | 565.29 ± 61.80 |
PTN * | 217.37 ± 26.74 | 253.26 ± 26.11 | |
PTG * | 544.41 ± 94.72 | 659.76 ± 100.97 | |
Ultimate Strength (Ncm) | SPR | 1.11 ± 0.09 | 1.11 ± 0.09 |
PTN | 0.84 ± 0.09 | 0.82 ± 0.05 | |
PTG | 1.43 ± 0.12 | 1.48 ± 0.08 | |
Distortion Angle * (°) | SPR * | 621.61 ± 28.00 | 676.23 ± 63.06 |
PTN * | 359.36 ± 19.51 | 429.91 ± 26.44 | |
PTG * | 507.76 ± 72.94 | 641.48 ± 117.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.; Ha, J.-H.; Kwak, S.W.; Kim, H.-C. Advancement of Mechanical Properties of Nickel-Titanium Rotary Endodontic Instruments by Spring Machining on the File Shaft. Materials 2020, 13, 5246. https://doi.org/10.3390/ma13225246
Ahn S, Ha J-H, Kwak SW, Kim H-C. Advancement of Mechanical Properties of Nickel-Titanium Rotary Endodontic Instruments by Spring Machining on the File Shaft. Materials. 2020; 13(22):5246. https://doi.org/10.3390/ma13225246
Chicago/Turabian StyleAhn, Sangmi, Jung-Hong Ha, Sang Won Kwak, and Hyeon-Cheol Kim. 2020. "Advancement of Mechanical Properties of Nickel-Titanium Rotary Endodontic Instruments by Spring Machining on the File Shaft" Materials 13, no. 22: 5246. https://doi.org/10.3390/ma13225246
APA StyleAhn, S., Ha, J. -H., Kwak, S. W., & Kim, H. -C. (2020). Advancement of Mechanical Properties of Nickel-Titanium Rotary Endodontic Instruments by Spring Machining on the File Shaft. Materials, 13(22), 5246. https://doi.org/10.3390/ma13225246