Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks
Abstract
:1. Introduction
2. Experiments
3. Evaluation of Fracture Toughness Using the Local Approach
FE Analysis of Near Crack-Tip Fields
4. Weibull Stress Criterion
5. Failure Assessment and Constraint Loss Correction Using Equivalent CTOD Ratio
6. Conclusions
- (1)
- WP specimens exhibited a larger CTOD fracture toughness than 3PB specimens. This is due to the fact that the tensile loading mode exerts a smaller constraint effect on the crack tip of the WP specimens than the bending loading mode applied to the 3PB specimens.
- (2)
- It was proven that the Weibull stress fracture criterion is a useful fracture parameter for the assessment of brittle fracture of 9% Ni steel when using the local approach. The Weibull stress obeys the two-parameter Weibull distribution at the onset of brittle fracture in both the 3PB and WP specimens.
- (3)
- The conventional fracture toughness evaluation procedure resulted in an excessively conservative result that can be reasonably reduced by applying the equivalent CTOD ratio . This ratio can be obtained by analyzing the correlation between experimental CTOD values and the theoretical Weibull stress for the 3PB and WP specimens.
Author Contributions
Funding
Conflicts of Interest
References
- International Gas Union. 2020 World LNG Report; International Gas Union: Barcelona, Spain, 2020; Available online: https://www.igu.org (accessed on 20 November 2020).
- International Group of Liquefied Natural Gas Importers. GIIGNL 2020 Annual Report; International Group of Liquefied Natural Gas Importers: Neuilly-sur-Seine, France, 2019; Available online: https://giignl.org/ (accessed on 20 November 2020).
- Tronskar, J.P.; Mannan, M.A.; Lai, M.O.; Sigurdsson, G.; Halsen, K.O. Crack tip constraint correction applied to probabilistic fracture mechanics analyses of floating production, storage and off-loading vessels. Eng. Fract. Mech. 2003, 70, 1415–1446. [Google Scholar] [CrossRef]
- Zhu, X.K.; Joyce, J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 2012, 85, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Cicero, S.; Ainsworth, R.A.; Gutiérrez-Solana, F. Engineering approaches for the assessment of low constraint fracture conditions: A critical review. Eng. Fract. Mech. 2010, 77, 1360–1374. [Google Scholar] [CrossRef]
- VOCALIST. Validation of Constraint Based Assessment Methodology in Structural Integrity, FIKS CT-2000-00090. Fifth Framework of the European Atomic Energy Community (EURATOM). Available online: https://cordis.europa.eu/project/id/FIKS-CT-2000-00090 (accessed on 20 November 2020).
- Betegon, C.; Hancock, J.W. Two-parameter characterization of elastic-plastic crack tip fields. J. Appl. Mech. 1991, 58, 104–110. [Google Scholar] [CrossRef]
- O’Dowd, N.P.; Shih, C.F. Family of crack tip fields characterized by a triaxiality parameter—I. Structure of fields. J. Mech. Phys. Solids 1991, 39, 989–1015. [Google Scholar] [CrossRef]
- O’Dowd, N.P.; Shih, C.F. Family of crack tip fields characterized by a triaxiality parameter—II. Fracture applications. J. Mech. Phys. Solids 1992, 40, 939–963. [Google Scholar] [CrossRef]
- O’Dowd, N.P. Application of two parameter approaches in elastic-plastic fracture mechanics. Engng. Fract. Mech. 1995, 52, 445–465. [Google Scholar] [CrossRef]
- Moon, D.H.; Park, J.Y.; Kim, M.H. Effects of the Crack Tip Constraint on the Fracture Assessment of an Al 5083-OWeldment for Low Temperature Applications. Materials 2017, 10, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravero, S.; Ruggieri, C. Structural integrity analysis of axially cracked pipelines using conventional and constraint-modified failure assessment diagrams. Int. J. Press. Vessel. Pip. 2006, 83, 607–617. [Google Scholar] [CrossRef]
- Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung. FITNET Fitness-for-Service (FFS) Procedure; Kocak, M., Webster, S., Janosch, J.J., Ainsworth, R.A., Koers, R., Eds.; GKSS Research Center: Geesthacht, Germany, 2008; Volume 1, MK8. [Google Scholar]
- Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung. FITNET Fitness-for-Service (FFS) Annex; Kocak, M., Hadley, I., Szavai, S., Tkach, Y., Taylor, N., Eds.; GKSS Research Center: Geesthacht, Germany, 2008; Volume 2, MK8. [Google Scholar]
- Sherry, A.H.; Wilkes, M.A.; Beardsmore, D.W.; Lidbury, D. Material constraint parameters for the assessment of shallow defects in structural components. Part I: Parameter solutions. Eng. Fract. Mech. 2005, 72, 2373–2395. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Metallic Materials—Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components; BS ISO 27306; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Beremin, F. A local criterion for cleavage fracture of a nuclear pressure vessel. Metall. Trans. 1983, 14, 2277–2287. [Google Scholar] [CrossRef]
- Ruggieri, C.; Dodds, R.H., Jr. A local approach to cleavage fracture modeling: An overview of progress and challenges for engineering applications. Eng. Fract. Mech. 2018, 187, 381–403. [Google Scholar] [CrossRef]
- Minami, F.; Ohata, M. Constraint assessment of brittle fracture of steel components ISO 27306 vs. FITNET FFS. Eng. Frac. Mech. 2012, 84, 67–82. [Google Scholar] [CrossRef]
- Minami, F.; Ohata, M.; Shimanuki, H.; Handa, T.; Igi, S.; Kurihara, M.; Kawabatad, T.; Yamashitae, Y.; Tagawaf, T.; Hagihara, Y. Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel components. Eng. Fract. Mech. 2006, 73, 1996–2020. [Google Scholar] [CrossRef]
- Yamashita, Y.; Minami, F. Constraint loss correction for assessment of CTOD fracture toughness under welding residual stress. Part I: Methodology using the equivalent CTOD ratio. Eng. Frac. Mech. 2010, 77, 2213–2232. [Google Scholar] [CrossRef]
- British Standard Institution. Fracture Mechanics Toughness Tests, Part 1. In Method for Determination of KIc, Critical CTOD and Critical J Values of Metallic Materials; BS7448:1991; British Standard Institution: London, UK, 1991. [Google Scholar]
- Bilby, B.A.; Cottrell, A.H.; Smith, E.; Swinden, K.H. Plastic yielding from sharp notches. Proc. R. Soc. 1964, 279, 1–9. [Google Scholar]
- Eikrem, P.A.; Zhang, Z.L.; Nyhus, B. Effect of plastic prestrain on the crack tip constraint of pipeline steels. Int. J. Pres. Ves. Pip. 2007, 84, 708–715. [Google Scholar] [CrossRef]
- British Standard Institution. Guide on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures; BS7910:2005; British Standard Institution: London, UK, 1991. [Google Scholar]
- Hadley, I.; Horn, A. Treatment of constraint in BS 7910:2013, ISO 27306 and DNVGL-RP-F108. Int. J. Press. Vessel. Pip. 2019, 169, 77–93. [Google Scholar] [CrossRef]
C | Mn | P | S | Si | Ni | |
---|---|---|---|---|---|---|
Chemical Composition (wt.%) | 0.04 | 0.61 | 0.07 | 0.005 | 0.003 | 9.04 |
Yield Stress (MPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|
941 | 1091 | 30.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.K.; Oh, B.T.; Kim, J.H. Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks. Materials 2020, 13, 5250. https://doi.org/10.3390/ma13225250
Kim YK, Oh BT, Kim JH. Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks. Materials. 2020; 13(22):5250. https://doi.org/10.3390/ma13225250
Chicago/Turabian StyleKim, Young Kyun, Byung Taek Oh, and Jae Hoon Kim. 2020. "Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks" Materials 13, no. 22: 5250. https://doi.org/10.3390/ma13225250
APA StyleKim, Y. K., Oh, B. T., & Kim, J. H. (2020). Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks. Materials, 13(22), 5250. https://doi.org/10.3390/ma13225250