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Abstract: This article aims to merge two evolving technologies, namely additive manufacturing
and composite manufacturing, to achieve the production of high-quality and low-cost composite
structures utilizing additive manufacturing molding technology. This work studied additive
manufacturing processing parameters at various processing stages on final printed part performance,
specifically how altering featured wall thickness and layer height combine to affect final porosity.
Results showed that reducing the layer height yielded a 90% improvement in pristine porosity
reduction. Optimal processing parameters were combined and utilized to design and print a closed
additive manufacturing molding tool to demonstrate flexible composite manufacturing by fabricating
a composite laminate. Non-destructive and destructive methods were used to analyze the composite
structures. Compared to the well-established composite manufacturing processes of hand lay-up and
vacuum-assisted resin transfer molding methods, additive manufacturing molding composites were
shown to have comparable material strength properties.
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1. Introduction

Carbon fiber, glass fiber, and natural fiber composite materials are subject to increased worldwide
demand through many industries, resulting in a predicted 130-billion-dollar industry in 2024, up from
about 90 billion in 2019 [1]. Due to the expense associated with traditional composite material processing,
alternative processing methods have recently been explored to reduce the cost, namely the time of
autoclave and out-of-autoclave processes [2,3]. With the development of materials compatible with
the various types of additive manufacturing (AM) technology, the spectrum of usefulness associated
with AM platforms has increased considerably [4–10]. AM has been deemed a disruptive technology
due to its design flexibility, custom material formulation, integrability, and mass customization.
The economic benefit, reduced lead time, tooling design flexibility, and autoclave compatibility have
led to this technology being adopted into the composite manufacturing tooling/ mold industry.

Material extrusion or fused filament fabrication (FFF) is the most widely used form of AM by
researchers and enthusiasts due to the simple mechanical construction and a wide variety of material
selection. Advanced material formulations are now customized for a specific application by various
combining methods. These advances in material formulations have resulted in soluble polymers
that are autoclave compatible. This compatibility has opened the door to additional functional
applications in the low volume composite manufacturing field via FFF [11–15]. Autoclavable processes
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provide state-of-the-art techniques for producing high-quality composite structures (e.g., <2% defect).
However, expensive traditional materials (i.e., invar and aluminum [16]) used to create autoclave
resistant molds incur long processing times associated with forming master molds for high volume
production. AM tooling and molding considerations have provided insight into new ways to produce
composite structures at a fraction of the cost compared to using existing subtractive computer numerical
control (CNC) methods to create tooling and molds [17]. Researchers have recently demonstrated
additive manufacturing molding (AMM) tooling capabilities that withstand the extreme autoclave
environment for composite fabrication [13]. Providing high-quality autoclave composite structures
using printable tooling at a reduced cost provides justification to continue improving composites
structures processing technology due to the demand for composite materials.

To fully utilize AMM, specifically for closed molding composite fabrication, the structure must
possess the following characteristics: (1) thermally compatible printing material that closely mirrors
the composite materials thermal expansion, (2) a rigid body/frame to support the processing load
while maintaining desired geometry, and (3) a non-porous hermetic structure which enables a vacuum
seal for the resin transferring molding (RTM) procedure. Researchers have proven the viability first
two characteristics, and due to the desired closed molding application, we will focus on the third
characteristic. The first two are related to the material’s intrinsic properties, while the porous nature
can be altered based on material properties and AM processing stages and parameters. The porosity
of printed parts can be controlled by introducing functional material [18–21] or altering processes
parameters [22]. Altering processing parameters is less expensive and can be incorporated with
an abundance of AM materials. AM processing parameters are split into three stages. The stages are
pre-processing, intermediate processing, and post-processing. The pre-processing stages consist of
geometric design, structure wall thickness, material conditioning, machine maintenance, simulation
platforms, etc. These types of parameters are navigated prior to the initiation of the slicing program.
Intermediate processing is next and mainly consists of slicer parameters such as printing speed, building
orientation, layer height, infill density, infill pattern, chamber temperature, etc. Many researchers have
studied factors such as these during the life of material extrusion technology [23–25]. Once the part
is fabricated, post-processing is the final stage. Due to the variability in AM parts, it is beneficial to
determine how post-processing methods can improve surface finishes and reduce part variability for
the final application [26]. Post-processing can utilize several mechanical or chemical tools such as
coating, sanding/grinding, and even computer numerical control (CNC) machinery [26,27].

Ultimately, each stage plays a fundamentally critical role in the components’ final performance
for their intended application, either aesthetically, structurally, or functionally. Typically, the final
application will dictate which stage is targeted during processing considerations. Here, we focus on
one aspect of all three processing categories. Figure 1 displays the three processing categories with
corresponding attributes. Once parameters are understood, the airtight AMM is then used to fabricate
a composite laminate. Well established currently used composite manufacturing methods hand
lay-up (HL) and vacuum-assisted resin transfer molding (VARTM), are both used to create additional
composite laminates for comparison. HL is a composite fabrication technique that uses a roller or brush
to distribute the resin matrix on the reinforcing material manually. Structural composite materials
range from glass, carbon, kevlar, and natural fibers. One of the limitations of this method is the ending
performance variation due to different fabricators technique. This holds especially when this method
is used for in-situ repair of structures. A more consistent method is known as resin transfer molding
(RTM). When a vacuum assists the transferring of resin into the enclosed area and compacts the fibers,
this method is vacuum-assisted RTM. The second method, VARTM, first establishes an enclosure,
usually with disposable plastic bagging material, to create a vacuum seal around the dry fibers.
Once a vacuum is established, the resin is drawn into the enclosed area and slowly infiltrates the dry
fibers until entirely saturated. This method has been investigated for in-situ repair by Ramos et al. [28]
due to the consistency of performance compared to HL. The composites properties of the AMM, HL,
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and VARTM samples are evaluated utilizing non-destructive and destructive methods to understand
the mechanical performance of each manufacturing type.

Figure 1. Additive Manufacturing (AM) three processing stages: pre, intermediate, and post processing.

2. Materials and Methods

2.1. Vessel Design and Testing

2.1.1. Additive Manufacturing of Pressure Vessels

All samples in this work were printed with a commercial desktop 3D printer (Lulzbot Taz 6) using
a 0.5 mm nozzle. All printed samples were created using high impact polystyrene (HIPS) material
(3DX Tech). The HIPS material was selected due to its solubility in the environmentally friendly
solvent (limonene). The bed temperature and hot end temperature remained constant throughout
the study per the manufacturer’s temperature recommendations of 100 ◦C and 235 ◦C, respectively.
A concentric pattern of 100% infill and an extrusion multiplier of 1.0 was used to create the parts.
The main parameters explored are wall thickness (WT) and layer height (LH), as they are believed to
be significant design and processing parameters influencing part porosity. To evaluate the porosity
of AM structures, a pressure vessel is designed to contain pressurized gas. Figure 2 displays CAD
models of pressure vessels with different design parameters (WT) and processing parameters (LH).
Table 1 provides a detailed breakdown of the parameters mentioned, such as the total processing time
and the pressure vessel’s internal volume. Table 1 is primarily grouped by 0.15 mm and 0.40 mm
LH. Despite the combination of layer heights and wall thickness, all vessels maintained a constant
volume showed in Table 1. Due to the closed molding tooling application, a printed part’s ability to
hold a vacuum or pressure is desired.

2.1.2. Leak Testing Procedure

Two variations of tests (qualitative image analysis and quantitative water displacement)
were performed on untreated samples to determine the effect of design and processing parameters on
the printed component’s porosity. Figure 3A provides a visual of the setup that was used to collect
the visual qualitative data. The vessel is connected to a portable air compressor (Campbell Hausfeld
EX 1001, Harrison, OH, USA) and submerged underwater to visually detect the number of defects and
their surface locations within the part after printing. A high-speed camera (Vision Research Company
Phantom v 210, Wayne, MI, USA) with a Zeiss 50 mm f/2 Makro-planar lens was used to capture
the escaped air due to leakages. The quantitative experimental setup used to determine the volumetric
flow rate of the air leakage is visually described in Figure 3B. The vessel was inserted into the inverted
graduated cylinder to collect leaked air at different input pressures. The total amount of air contained
in 30 seconds was then measured on the graduated cylinder. Due to the inherent defects accumulated
during the fabrication process, it is expected that the WT thickness can compensate for the lack of
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bonding within a single layer [23,29–32]. The LH was also investigated as a means of coping with
the fabrication defects. The smaller LH was expected to outperform the larger due to material streams
embodying a more elliptical shape. This elliptical shape leads to improved adhesion between lines and
layers [33].

Figure 2. Render of cross-section of the vessel Wall Thickness and Layer Height design variables.

Table 1. Input and Output vessel design parameters.

Input Layer Height (mm) 0.15 0.40

Wall Thickness (mm) 1 3 6 1 3 6

Output Number of Layers 501 514 534 187 192 200
Printing Time (minutes) 103 113 152 39 43 57

Internal volume (cm3) 17,809.37

Figure 3. (A) Qualitative and (B) Quantitative vessel experimental setup.

2.2. Mold Design and Testing

2.2.1. Additive Manufacturing of Mold/Tooling

Molds were CAD designed and additively manufactured using HIPS. The optimized
pre-processing and intermediate-processing parameters were used to design and build the structure.
These parameters are attributed to the lowest leakage rate from the vessel pressure experiment.
The mold was designed with an internal cavity where dry fibers and the remaining lay-up would be
placed. An inlet and an outlet port for tube connection for resin transfer molding (RTM) process were
also included in the design. The square mold’s footprint was 304.8 mm × 304.8 mm and had a height
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of 12.7 mm (12 × 12 × 0.5 in). Since we want to compare AMM to additional composite fabrication
methods, the simple planar geometry was used to create a panel laminate structure for non-destructive
and destructive evaluation.

2.2.2. Mold Post-Processing

Due to the variability of AM processing, understanding the conditions of the post-processing
techniques is necessary. Vapor bathing is a common chemical post-processing method used to heal
the porous and rough surface of extrusion printed parts [34–37]. Here, we used a standard approach
that can be incorporated regardless of the printed material. A brush-on exterior coating (sealing)
method is used as the post-processing method to seal all remaining pores on the molding structure’s
exterior to create a completely hermetic part. The material used to coat the mold is a thermoset
polymer Armorstar VE IVEXC410, a Vinyl Ester/DCPD blend infusion resin manufactured by Polynt
Group. Once coated, the mold is now conditioned for the final application of closed molding composite
tooling using VARTM technology. To ensure the post-processed printed structure was entirely sealed,
a vacuum was connected to the mold’s outlet port while the input was clamped. A vacuum bag was
then placed over the mold and sealed with tacky tape on a glass substrate. Once the vacuum was
activated, the plastic bag remained inflated around the mold as long as the structure was seal was
true. On the contrary, if the seal were compromised, the vacuum would seep through the porous areas
on the printed structure and cause the plastic bag to form around the mold. A comparison study
was created from the post-processed mold and the pristine (no post-processing) mold to verify the air
permeability properties before and after treatment.

2.3. Composite Design and Testing

2.3.1. Manufacturing of Fiber-Reinforced Composites

Since closed mold composite fabrication is desired using AM technology, one question that
remains is the structural quality of the composite structure produced using AMM technology. In this
work, we use three fabrication techniques to establish a comparative study to test the quality of
the composite: HL, VARTM, and AMM. All samples, respective to their manufacturing method,
were cut from a two-ply panel with a 304.8 mm × 304.8 mm footprint. The panel consisted of carbon
fiber IM6 plain weave (0/90) with vinyl ester/DCPD blend as the matrix material. Each fiber ply has
a nominal thickness of 0.167 mm per ply. Since all panels were fabricated with two plies; essentially,
we are evaluating porosity, compaction, and fiber volume fraction of the composite system.

2.3.2. Non-Destructive and Destructive Evaluation

Besides cost, one of the differences when comparing fabrication techniques is mechanical properties
and quality. Here, we seek an understanding of the composite structure and mechanical strength quality
by utilizing non-destructive and destructive equipment. Composites samples were cut using a wet saw
according to ASTM D 3039 [38]. A Dolphicam handheld ultrasound imaging device (DolphiTech) was
used to inspect samples prior to destructive testing. Destructive mechanical testing using materials
test system (MTS) 858 tabletop system (25 kN) was utilized following Table 1 of ASTM D 3039 to assess
the structural integrity of the composite samples.

3. Results and Discussion

3.1. Simulation Results

Simplified 3D was utilized to analyze the initial G-code file prior to printing. The program
visualized the nozzle’s travel path during fabrication and showed a horizontal “fabrication seam”
visibly forming along the vessel’s body. The seams are visually observed during the simulation and
physical samples, as shown in Figure 4. As the nozzle approaches full circular completion, the machine
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moves slightly in the positive y-direction to create the next circle with an incrementally larger diameter.
Due to the machine’s resolution, there is a small area where the extruded material does not have
the same thickness as other areas due to travel speed and resolution. This is shown in Figure 4C.
Figure 4D,E show the actual seam on the printed samples. Due to the natural color of the HIPS printed
material, blue dye was used to aid in the visual of the seam area in Figure 4E. Figure 4F displays
the response of the seam under internal pressure. As the thickness of the walls increases, the vessel’s
rigidity increases, which also prompts enhanced air holding performance at the expense of time and
additional material cost.

Figure 4. (A) Simplified 3D simulated vertical printing seam throughout entire vessel structure.
(B) Simulated vertical and cross-section printed seam at layer 54. (C) Simulated zoomed cross-sectional
layer seam nozzle, layer gap, upcoming path, and printed stream. (D) Physical zoomed vertical layer
seam. (E) Physical vertical seam throughout entire structure. (F) Physical seam response under pressure
at 0.275 MPa (40 psi).

3.2. Pressure Vessel Results

The vessel experiment yielded both qualitative and quantitative data. Visual qualitative data
was gathered with the aid of a high-speed camera. With the aid of phantom camera control (PCC)
software, the camera displayed porous areas within the vessel by air pockets erupting from the printed
vessel. The six parts in Figure 5 display qualitative results from the vessel experiment. Frame images
visually show the six vessel design types that were tested using the explained methods. All images
were captured during the lower bound of the charging experiment at 0.275 MPa (40 psi). All vessels
printed with 0.15 mm LH (Figure 5A–C) showed significantly less porous areas throughout the entire
structure compared to their counterparts printed at 0.40 mm LH (Figure 5D–F). This was observed
due to improved interlayer adhesion. A reduced LH corresponds to a smaller z height movement,
promoting greater adhesion between layers due to elliptical shape. Visually comparing samples printed
at a LH of 0.15 mm, the 6 mm WT sample showed fewer porous regions. A similar phenomenon
was observed with the samples printed at a LH of 0.40 mm. Vessels with a WT of 6 mm showed
a reduction of pores, which are also demonstrated by the erupting air pockets’ intensity. The porous
structure displayed a more turbulent flow rate. It can be assumed this is due to the void’s size
paired with the charging pressure. Increasing charging pressure correlates with a more intense
airflow rate within the structure. This remained true while increasing pressure at 0.137 MPa (20 psi)
increments. The intensity of the escaped air also directly correlates to the size and number of
pores/voids within the structure, allowing air to escape at a faster rate. Quantitative results are shown
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in Figure 6, where the top and bottom plots correspond to 0.40 and 0.15 mm LH, respectively. The data
collected here corresponds to the qualitative study. All vessels that were fabricated at 0.40 mm LH
showed a significant increase in the volumetric flow of escaped air. The larger LH (0.4 mm) showed
a greater tendency to delaminate between layers, which significantly reduced the air holding capacity
independent of wall thickness. The 6 mm and 3 mm created with a LH of 0.40 mm leaked at a rate of
53.75 mL/s and 72.25 mL/s, respectively, at 0.413 MPa (60 psi) charging. Compared to their counterparts,
the 6 mm, 3 mm, and 1 mm vessels with a LH 0.15 mm leaked at a rate of 0.07 mL/s, 1.04 mL/s,
and 0.80 mL/s at 0.413 MPa, respectively. Comparing the six sets of designs, the volumetric flow rate is
reduced by greater than 90% for 1 mm, 3 mm, and 6 mm wall thickness with a 0.15 mm LH compared
to the larger 0.40 mm LH. When charging to 0.413 MPa, the 1 mm WT with a LH of 0.40 mm could not
contain the pressure and exploded before it reached the remaining interval pressures.

Figure 5. Qualitative vessel image analysis. (A–C) represent 0.15 mm LH. (D–F) represent 0.40 mm LH.

The fabrication seam was identified as the initial failing point with all printed designs. The seam is
formed due to the nozzle movement during the changing of travel lanes during the material deposition
process. It was consistently found that these seams are the weakest or most porous areas on the printed
component. At the lowest testing pressure 0.137 MPa, the seam area always displayed discontinuities
first. Thicker wall design was expected to create a more ridge structure and compensate for any defects
formed during fabrication. This was confirmed with the quantitative leak rate analysis. Both 6 mm
WT samples outperformed the other WT samples in their representative LH category. Although faster
printing time is associated with a larger LH independent of WT, the amount of post-processing required
to create an airtight structure may outweigh the longer initial fabrication time, as shown in Table 1.
Since post-processing is still needed to produce a hermetic structure, it is critical to understand if
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the additional initial processing time a worthy exchange. Minimum defects will inherently result
in less post-processing time and effort due to producing a component with fewer defects.

Figure 6. Quantitative vessel volumetric leak rate graph. Top three lines and bottom lines correspond
to 0.40 mm 0.15 mm LH respectively.

3.3. Mold Results

Higher resolution and reduced lead times are the factors that lead to creating high-quality molds
with speedy implementation. We selected the optimal parameter of 0.15 mm LH paired with a 1 mm
WT for printing the mold, due to the high-resolution demand in this field and reduced fabrication
time, as seen in Table 1. The printed mold acts similarly to a plastic bag used in the VARTM method.
Post-processing was then performed using a brush-on coating method to seal printed defects. To ensure
post-processing is effective, a comparison between unprocessed and processed mold was performed.
The plastic bag was able to provide an enclosure for both the printed molds. As expected, the mold
that was post-processed using brush-on coating treatment could seal all remaining pores on the surface.
Once the vacuum was activated, the bag remained inflated for 24 h to show mold durability and
displayed no signs of leakages (Figure 7B). The bag covering the unprocessed mold deflated until
firmly fitting around the mold itself (Figure 7A). Post-processing clearly shows a viable inexpensive
solution to heal defective components. Closely considering dimensional tolerances, one could also
print the larger LH to reduce printing time further since post-processing is still required for our closed
mold application.

Figure 7. (A) pristine and (B) coated mold under vacuum to visually evaluate structures porosity.
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3.4. Composite Results

3.4.1. Composite Processing

Laminates, manufactured with HL and VARTM, visually looked pleasing with no apparent defects
(resin-rich or dry) locations. The AMM laminate showed multiple small voids on the bottom of
the laminate (contacting glass substrate), indicating that resin could not fully penetrate both fiber plies
in some locations. Nominal sample thickness was measured and was found to vary for all methods.
While HL and VARTM showed relatively similar thickness, AMM had an alarmingly larger thickness
considering the uniform two plie lay-up. Due to the dry locations and access resin, it can be assumed
that, resulting in increased nominal laminate thickness, AMM samples will not perform as well as HL
and VARTM. This is because of the fundamental fiber volume fraction ratio, which directly relates to
the composite structure’s performance.

3.4.2. Non-Destructive Results

A non-destructive evaluation was utilized to inspect the internal structural integrity of
the composite samples. Figure 8 displays representative c-scan and b-scan images from
the non-destructive Dolphicam ultrasound imaging evaluation. The top images (c-scan) represent
a planar type view of surface scans, while the bottom images (b-scan) represent the cross-sectional
view from the corresponding c-scan. The heat-map represents the location, size, and depth of possible
defects present within the structure. The color gradient relates to the magnitude of the potential
defects and non-uniform areas. As the color intensity increases, the sound waves are interrupted due
to an internal discontinuity. Since we are evaluating composites, it is expected to observe voids present
within the structure sample. Both scans for the AMM sample clearly shows a highly porous section.
Since all samples were scanned in the manufacturing orientation, the cross-sectional b-scan identifies
this area as a noticeable surface defect. In general, the size and count of pores observed increased from
HL to VARTM to AMM, respectively. As discussed in the next section, the samples’ strength correlates
to the quality and defective areas observed.

Figure 8. Dolphicam Non-Destructive Evaluation images of HL, VARTM, and AMM composite
manufactured samples.

3.4.3. Destructive Results

A strain rate of 2 mm/min and 5 MPa (725 psi) tensile clamp pressure were used as test settings
on the MTS 858 tabletop system. Figure 9 displays ultimate strength (MPa) and maximum strain
data observed during testing for all three fabrication types. Four specimens where tested for each
fabrication type. Average ultimate strength measured on the HL, VARTM, and AMM specimens
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were observed at 440, 410, and 339 MPa, respectively. Average modulus of elasticity measured on
the HL, VARTM, and AMM specimens were observed at 19.43, 17.72, and 15.48 GPa, respectively.
We conclude HL samples outperformed both VARTM and AMM techniques due to the fiber plies’
compaction, which resulted in a high fiber volume ratio and higher strength. The fiber volume ratio
was calculated by utilizing the mass and density of both constituents. The fibers were weighed
before infusion, then the total laminate weight after infusion and curing was reduce by the fiber
weight yielding the weight of the matrix. The average laminate thickness of each technique was
measured at 0.59, 0.61, and 0.75 mm, respectively. The hierarchy of the samples’ thickness from least
to greatest follows the same trend as the strength performance, indicating the reduction in strength
is related to the thickness of the samples. The excess of voids and resin present within the structure
(Figure 8), the less load the specimens could endure. Since all samples were created with two fiber plies,
the added thickness for the AMM samples is attributed to excess resin constructing the entire sample.
AMM samples displayed lowest ultimate stress due to excessive resin distribution. This resulted from
the composite structure yielding premature matrix dependent effects due to its poor fiber volume ratio
rather than fiber dependent measured in both HL and VARTM. According to ASTM D 3039, both HL
and VARTM samples experienced three of the eight failure modes which include angled, splitting,
and grip failure modes. HL and VARTM also showed similar failure areas and failure locations,
which was located in the middle for the gauge area and the top for grip/tab area. However, the AMM
samples only experienced lateral failures in the gauge area in the middle of the specimen. Since both
HL and VARTM both displayed the same failure modes, there is no clear correlation which supports
failure modes specific to each of the three fabrication types.

Figure 9. (A) Ultimate strength and (B) rupture strain data experienced during tensile fracture from
HL, VARTM, and AMM composite panels.

4. Conclusions

In this study, AMM technology is utilized as a closed molding tool for composite manufacturing
(CM). The sequence of developing an AM part is separated into three primary processing stages:
pre-processing, intermediate-processing, and post-processing. We investigated one component from
each stage for its contribution to fabricating an airtight hermetic AM part for closed molding. It was
found that LH has a significant impact on the porosity of the printed specimen, therefore controlling
its ability to contain pressurized air. By reducing the LH 62% from 0.4 mm to 0.15 mm, we reduced
the volumetric flow rate by greater than 90%. WT also showed to have an impact on the porosity of
the printed part. The largest WT examined 6 mm, outperformed its opponents 3 mm and 1 mm WT
in their respective LH category. Due to the demand for reduced time and materials, a 1-mm WT was
paired with 0.15 LH to create the AMM tool with the least number of pores in a short manufacturing
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processing time. Post-processing proved to be necessary to completely seal the tools’ exterior surface
for closed molding CM. Once post-processed, the AMM tool was able to hold a vacuum to fabricate
a composite laminate. Compared to composite laminates manufactured by well-established CM
techniques, HL and VARTM, AMM laminates displayed tensile properties within 22% of the average
ultimate strength values and 0.3% of maximum strain until failure. Despite reduced tensile values due
to excess resin and dry locations from improper wetting, AM was shown to be controllable, flexible,
customizable, and achieved the desired goal for CM. AM has demonstrated the capability to produce
molding/ tooling structures at low cost, with reduced lead time with high flexibility.
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