Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Laser Processing
2.3. Surface Characterization
2.4. Cell Culture
2.5. Cell Metabolic Activity
2.6. Cell Proliferation
2.7. LDH Release
2.8. Metal Release
2.9. Osteogenic Differentiation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Laser Surface Texturing
3.1.1. Surface Morphology and Topography
3.1.2. Chemical Characterization
3.1.3. Wettability
3.2. Asessment of In Vitro Biocompatibility
3.2.1. Cell Viability
3.2.2. Cell Proliferation
3.2.3. LDH Release
3.2.4. Metal Release
3.2.5. Osteogenic Differentiation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kapadia, B.H.; Berg, R.A.; Daley, J.A.; Fritz, J.; Bhave, A.; Mont, M.A. Periprosthetic joint infection. Lancet 2016, 387, 386–394. [Google Scholar] [CrossRef]
- Koldsland, O.C.; Scheie, A.A.; Aass, A.M. Prevalence of peri-implantitis related to severity of the disease with different degrees of bone loss. J. Periodontol. 2010, 81, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R. Definition, etiology, prevention and treatment of peri-implantitis—A review. Head Face Med. 2014, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, E.; Schweitzer, L.; Cunha, A.; Polte, J.; Huth-Herms, K.; Kieburg, H.; Hesse, B. Application of laser surface nanotexturing for the reduction of peri-implantitis on biomedical grade 5 Ti-6Al-4V dental abutments. In Proceedings of the SPIE 10908, San Francisco, CA, USA, 2–3 February 2019. [Google Scholar]
- Lang, N.P.; Lindhe, J. Clinical Periodontology and Implant Dentistry; Chichester John Wiley & Sons: Chichester, UK, 2015. [Google Scholar]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 12, 101067. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Yang, S.; Lai, K.; Yang, H.; Webster, T.J.; Yang, L. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine 2017, 1, 123–142. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglic, A. Biomaterial surface modification of titanium and titanium alloys for medical applications. In Nanomedicine; One Central Press: Manchester, UK, 2014. [Google Scholar]
- Niinomi, M.; Narushima, T.; Nakai, M. Advances in Metallic Biomaterials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bandopadhyay, S.; Bandyopadhyay, N.; Ahmed, S.; Yadav, V.; Tekade, R.K. Current Research Perspectives of Orthopedic Implant Materials. In Biomaterials and Bionanotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 337–374. [Google Scholar]
- Markhoff, J.; Krogull, M.; Schulze, C.; Rotsch, C.; Hunger, S.; Bader, R. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages. J. Mater. 2017, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Hu, H.; Li, Z.; Shen, Y.; Xu, Y.; Zhang, G.; Zeng, X.; Deng, J.; Zhao, S.; Ren, T.; et al. Enhanced Osseointegration of Titanium Alloy Implants with Laser Microgrooved Surfaces and Graphene Oxide Coating. ACS Appl. Mater. Interfaces 2019, 11, 39470–39483. [Google Scholar] [CrossRef]
- Bowers, K.T.; Keller, J.C.; Randolph, B.A.; Wick, D.G.; Michaels, C.M. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int. J. Oral Maxillofac. Implant. 1992, 7, 302–310. [Google Scholar]
- Wennerberg, A. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on e effects of blasting material and surface topography. Biomaterials 1996, 17, 15–22. [Google Scholar] [CrossRef]
- Taborelli, M.; Jobin, M.; François, P.; Vaudaux, P.; Tonetti, M.; Szmukler-Moncler, S.; Simpson, J.P.; Descouts, P. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization. Clin. Oral Implant. Res. 1997, 8, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Cordioli, G.; Majzoub, Z.; Piattelli, A.; Scarano, A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: An experimental study in the rabbit tibia. Int. J. Oral Maxillofac. Implant. 2000, 15, 668–674. [Google Scholar]
- Zinger, O.; Zhao, G.; Schwartz, Z.; Simpson, J.; Wieland, M.; Landolt, D.; Boyan, B. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 2005, 26, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Gaggl, A.; Schultes, G.; Müller, W.D.; Kärcher, H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study. Biomaterials 2000, 21, 1067–1073. [Google Scholar] [CrossRef]
- Schnell, G.; Jagow, C.; Springer, A.; Frank, M.; Seitz, H. Time-Dependent Anisotropic Wetting Behavior of Deterministic Structures of Different Strut Widths on Ti6Al4V. Metals 2019, 9, 938. [Google Scholar] [CrossRef] [Green Version]
- Gnilitskyi, I.; Pogorielov, M.; Viter, R.; Ferraria, A.M.; Carapeto, A.P.; Oleshko, O.; Orazi, L.; Mishchenko, O. Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures. Nanomedicine 2019, 21, 102036. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Rosenfeld, A.; Krüger, J. Sub-100-nm laserinduced periodic surface structures upon irradiation of titanium by ti:Sapphire femtosecond laser pulses in air. Appl. Phys. A 2013, 110, 547–551. [Google Scholar] [CrossRef]
- Schnell, G.; Duenow, U.; Seitz, H. Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces. J. Mater. 2020, 13, 969. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.Y.; Guo, C. Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 2007, 253, 7272–7280. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; Von Alvensleben, F.A.; Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Reif, J.; Costache, F.; Bestehorn, M. Recent Advances in Laser Processing of Materials; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bonse, J.; Munz, M.; Sturm, H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 2005, 97, 013538. [Google Scholar] [CrossRef] [Green Version]
- Obara, G.; Shimizu, H.; Enami, T.; Mazur, E.; Terakawa, M.; Obara, M. Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses. Opt. Express 2013, 21, 26323–26334. [Google Scholar] [CrossRef]
- Emmony, D.C.; Howson, R.P.; Willis, L.J. Laser mirror damage in germanium at 10.6 μm. Appl. Phys. Lett. 1973, 23, 598–600. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; Van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Bonse, J.; Rosenfeld, A.; Krüger, J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 2009, 106, 104910. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F.; Mozetic, P.; Rainer, A.; Trombetta, M. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO₂ hybrid materials synthesized by sol-gel route: In vitro evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 395–401. [Google Scholar] [CrossRef]
- Przekora, A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 1036–1051. [Google Scholar] [CrossRef]
- DIN EN ISO 5832-1, Teil 1, (04.2017) Chirurgische Implantate-Metallische Werkstoffe-Teil 1: Nichtrostender Stahl; Beuth: Berlin, Germany, 2017.
- Oliveira, V.; Ausset, S.; Vilar, R. Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation. Appl. Surf. Sci. 2009, 255, 7556–7560. [Google Scholar] [CrossRef]
- Oliveira, V.; Cunha, A.; Vilar, R. Multi-scaled femtosecond laser structuring of stationary titanium surfaces. J. Optoelectron. Adv. Mater. 2010, 12, 654–658. [Google Scholar]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-Ray Photoelectron Spectroscopy Database, Standard Reference Database 20, Version 4.1; Naumkin, A.V., Ed.; NIST: Gaithersburg, MD, USA, 2012.
- Lavi, B.; Marmur, A. The exponential power law: Partial wetting kinetics and dynamic contact angles. Colloids Surf. A Physicochem. Eng. Asp. 2004, 250, 409–414. [Google Scholar] [CrossRef]
- Rakow, A.; Schoon, J.; Dienelt, A.; John, T.; Textor, M.; Duda, G.; Perka, C.; Schulze, F.; Ode, A. Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials 2016, 98, 31–40. [Google Scholar] [CrossRef]
- Ode, A.; Schoon, J.; Kurtz, A.; Gaetjen, M.; Ode, J.E.; Geissler, S.; Duda, G.N. CD73/5′-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur. Cell Mater. 2013, 25, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewska, A.; Catar, R.; Schoon, J.; Qazi, T.H.; Sass, F.A.; Jacobi, D.; Blankenstein, A.; Reinke, S.; Krüger, D.; Streitz, M.; et al. Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front. Immunol. 2019, 10, 2474. [Google Scholar] [CrossRef]
- De Chiffre, L.; Lonardo, P.; Trumpold, H.; Lucca, D.A.; Goch, G.; Brown, C.A.; Raja, J.; Hansen, H.N. Quantitative Characterisation of Surface Texture. CIRP Ann. Manuf. Technol. 2000, 49, 635–652. [Google Scholar] [CrossRef]
- Oshida, Y. Bioscience and Bioengineering of Titanium Materials; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bäuerle, D. Laser Processing and Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Sul, Y.-T.; Johansson, C.B.; Petronis, S.; Krozer, A.; Jeonge, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002, 23, 491–501. [Google Scholar] [CrossRef]
- Cunha, A. Multiscale Femtosecond Laser Surface Texturing of Titanium and Ti-tanium Alloys for Dental and Orthopaedic Implants; Doctoral Grant Fundação Para A Ciência E A Tecnologia (FCT): Bordeaux, France, 2015. [Google Scholar]
- Mozetič, M. Surface Modification to Improve Properties of Materials; Mdpi AG Verlag: Basel, Switzerland, 2018. [Google Scholar]
- Chung, J.Y.; Youngblood, J.P.; Stafford, C.M. Anisotropic wetting on tunable microwrinkled surfaces. Soft Matter 2007, 3, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, Q.; Li, M.; Li, X. Anisotropic wetting characteristics on submicrometerscale periodic grooved surface. Langmuir 2007, 23, 6212–6217. [Google Scholar] [CrossRef] [PubMed]
- Koegler, P.; Clayton, A.; Thissen, H.; Santos, G.N.; Kingshott, P. The influence of nanostructured materials on biointerfacial interactions. Adv. Drug Deliv. Rev. 2012, 64, 1820–1839. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, J.; Prina, E.; Goodridge, R.; Hague, R.; Edmondson, S.; Rose, F.; Christie, S. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater. Sci. Eng. C 2016, 67, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Furrer, S.; Scherer Hofmeier, K.; Grize, L.; Bircher, A.J. Metal hypersensitivity in patients with orthopaedic implant complications—A retrospective clinical study. Contact Dermat. 2018, 79, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachi, T.; Shuto, T.; Shinohara, Y.; Matono, Y.; Makihira, S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology 2015, 327, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G.J.; Valderrama, P.; Burbano, M.; Blansett, J.; Levine, R.; Kessler, H.; Rodriges, D.C. Foreign Bodies Associated With Peri-Implantitis Human Biopsies. J. Periodontol. 2015, 86, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Fretwurst, T.; Buzanich, G.; Nahles, S.; Woelber, J.P.; Riesemeier, H.; Nelson, K. Metalelements in tissue with dental peri-implantitis: A pilot study. Clin. Oral Implant. Res. 2016, 27, 1178–1186. [Google Scholar] [CrossRef]
- Perry, C.C.; Keeling-Tucker, T. Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. J. Inorg. Biochem. 1998, 69, 181–191. [Google Scholar] [CrossRef]
- Becaria, A.; Campbell, A.; Bondy, S. Aluminum as a toxicant. Toxicol. Ind. Health 2002, 18, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.; Rabin, P.L.; McKinney, T.D. Dialysis encephalopathy: A review. Int. J. Psychiatry Med. 1984, 13, 309–326. [Google Scholar] [CrossRef]
- Shah, S.A.; Yoon, G.H.; Ahmad, A.; Ullah, F.; Amin, F.; Kim, M.O. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice. Nanoscale 2015, 7, 15225–15237. [Google Scholar] [CrossRef]
- Golub, E.E.; Battaglia, K.B. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. [Google Scholar] [CrossRef]
- Olmedo, D.G.; Nalli, G.; Verdu, S.; Paparella, M.L.; Cabrini, R.L. Exfoliative cytology and titanium dental implants: A pilot study. J. Periodontol. 2013, 84, 78–83. [Google Scholar] [CrossRef]
- Penmetsa, S.L.D.; Shah, R.; Thomas, R.; Kumar, A.B.T.; Gayatri, P.S.D.; Mehta, D.S. Titanium particles in tissues from peri-implant mucositis: An exfoliative cytology-based pilot study. J. Indian Soc. Periodontol. 2017, 21, 192–194. [Google Scholar] [PubMed]
Chemical Elements | Al | V | Fe | O | C | N | Ti |
---|---|---|---|---|---|---|---|
Weight w (%) | 6.11 | 3.93 | 0.12 | 0.11 | 0.01 | 0.01 | Balance |
Surface Texture | Average Fluence Fav (J/cm2) | Pulse Frequency f (kHz) | Scanning Speed vf (mm/s) | Lateral Overlap Rate α (%) |
---|---|---|---|---|
UV-LIPSS | 0.04 | 200.00 | 105.00 | 91.00 |
GR-LIPSS | 0.10 | 200.00 | 150.00 | 82.00 |
Surface | Sa (nm) | Sz (nm) | Ssk (-) | Sku (-) | hP |
---|---|---|---|---|---|
PO | 16 ≤ Sa ≤ 032 | 130 ≤ Sz ≤ 167 | −0.04 ≤ Ssk ≤ −0.06 | −0.09 ≤ Sku ≤ −1.29 | - |
UV-LIPSS | 46 ≤ Sa ≤ 070 | 331 ≤ Sz ≤ 571 | 0.01 ≤ Ssk ≤ 0.20 | 0.38 ≤ Sku ≤ 0.58 | 56 ≤ hP ≤ 89 |
GR-LIPSS | 60 ≤ Sa ≤ 120 | 503 ≤ Sz ≤ 880 | 0.07 ≤ Ssk ≤ 0.29 | 0.03 ≤ Sku ≤ 0.63 | 56 ≤ hP ≤ 92 |
Element | PO | UV-LIPSS | GR-LIPSS |
---|---|---|---|
Ti(0) | 4.53 | 4.29 | |
Ti(II) | 4.29 | 3.99 | 2.81 |
Ti(IV) | 69.39 | 73.68 | 58.78 |
Al(0) | 1.44 | 2.34 | |
Al(III) | 15.83 | 11.89 | 33.79 |
V(0) | 0.46 | ||
V(III) | 1.18 | 2.30 | 1.16 |
V(IV) | 1.83 | 1.52 | 1.93 |
V(V) | 1.05 | 0.00 | 1.53 |
Surface | Orientation to Ripples Direction | Contact Angle θ (°) | Spreading Coefficient |η| (-) |
---|---|---|---|
PO | - | 49.1 ≤ θ ≤ 59.1 | 0.19 |
UV-LIPSS | Perpendicular | 32.2 ≤ θ ≤ 37.5 | 0.22 |
UV-LIPSS | Parallel | 35.1 ≤ θ ≤ 39.9 | 0.20 |
GR-LIPSS | Perpendicular | 50.5 ≤ θ ≤ 58.5 | 0.18 |
GR-LIPSS | Parallel | 55.4 ≤ θ ≤ 66.2 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweitzer, L.; Cunha, A.; Pereira, T.; Mika, K.; Botelho do Rego, A.M.; Ferraria, A.M.; Kieburg, H.; Geissler, S.; Uhlmann, E.; Schoon, J. Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V. Materials 2020, 13, 5342. https://doi.org/10.3390/ma13235342
Schweitzer L, Cunha A, Pereira T, Mika K, Botelho do Rego AM, Ferraria AM, Kieburg H, Geissler S, Uhlmann E, Schoon J. Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V. Materials. 2020; 13(23):5342. https://doi.org/10.3390/ma13235342
Chicago/Turabian StyleSchweitzer, Luiz, Alexandre Cunha, Thiago Pereira, Kerstin Mika, Ana Maria Botelho do Rego, Ana Maria Ferraria, Heinz Kieburg, Sven Geissler, Eckart Uhlmann, and Janosch Schoon. 2020. "Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V" Materials 13, no. 23: 5342. https://doi.org/10.3390/ma13235342
APA StyleSchweitzer, L., Cunha, A., Pereira, T., Mika, K., Botelho do Rego, A. M., Ferraria, A. M., Kieburg, H., Geissler, S., Uhlmann, E., & Schoon, J. (2020). Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V. Materials, 13(23), 5342. https://doi.org/10.3390/ma13235342