The Chemical-Mineralogical Characterization of Recycled Concrete Aggregates from Different Sources and Their Potential Reactions in Asphalt Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Characterization
2.2.1. Particle Size Distribution
2.2.2. Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate
2.3. Chemical Characterization
2.3.1. Ignition losses
2.3.2. pH
2.4. Mineralogical Characterization
3. Results and Discussion
3.1. Physical Characterization
3.1.1. Particle Size Distribution
3.1.2. Density and Absorption
3.2. Chemical Characterization
3.2.1. Loss of Ignition (550 °C and 1000 °C)
3.2.2. pH of NA, RCAP, and RCAB
3.2.3. X-ray Fluorescence (XRF)
3.2.4. Potential Reactions of RCAs in Asphalt Mixtures
4. Conclusions and Recommendations
- The physical characterization showed that the RCAs have lower density and higher absorption than NA. This result can be explained by the presence of mortar adhered in RCAs. As an RCA replaces the NA, the optimal asphalt content (OAC) increases due to higher absorption of the RCA, which ultimately increases the cost of the asphalt mixture.
- Coarser RCAs (25.0–19.0 to 9.5–4.75 mm) primarily contain quartz, calcite, and dolomite, which provide chemical and mineralogical characteristics suitable for use in asphalt mixtures.
- The increase in the concentration of CaO in the RCA, the decrease in SiO2 concerning the NA, and pH higher than 11.7, all promote the adhesion with the binder in the asphalt mixtures.
- The ratio of SiO2 to Na2O found in the RCAs, the reduction in the ratio between SiO2 and CaO (alkaline) in the replacements (15%, 30%, and 45%) of RCAs, and the absence of NaOH in non-asphalt mixtures promote alkaline activation reactions, which favor the chemical stability of the mixture.
- Although the exposure time of the RCAs to the coastal environment led to a high concentration of Cl− ions—up to 482 mg/L, some of Cl− ions came from stable salts that were not reactive with the organic compounds present in the asphalt binder.
- The nitrate and sulfate contents in RCAs do not promote nitration and sulfonation reactions owing to the absence of catalytic agents such as nitric and sulfuric acids, which favor chemical stability in asphalt mixtures.
- Dissolved metals in RCAs support the use of RCAs in asphalt mixtures because the lead and mercury contents do not generate adverse environmental impacts.
- Based on the chemical, mineralogical, and physical characteristics of the RCAs, the replacement of NA with an RCA in the manufacture of hot mix asphalt is an alternative viable. According to the results of this study, it is suggested to improve regulations to promote the use of RCAs in the manufacture of asphalt mixtures with less environmental impact in relation to conventional aggregates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S.N. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Kumar, R. Influence of recycled coarse aggregate derived from construction and demolition waste (CDW) on abrasion resistance of pavement concrete. Constr. Build. Mater. 2017, 142, 248–255. [Google Scholar] [CrossRef]
- Ossa, A.; García, J.; Botero, E. Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. J. Clean. Prod. 2016, 135, 379–386. [Google Scholar] [CrossRef]
- Bustos, C.A.P.; Pumarejo, L.G.F.; Cotte, É.H.S.; Quintana, H.A.R. Construction demolition waste (CDW), a perspective of achievement for the city of Barranquilla since its management model. Ing. Desarro. 2017, 35, 533–555. [Google Scholar] [CrossRef]
- Cotte, E.S.; Bustos, C.A.P.; Páez, C. Una visión de Ciudad sostenible desde el modelo de gestión de los residuos de construcción y demolición (Rcd) caso De estudio: Barranquilla. Tecnura 2020, 24, 68–83. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Marrocchino, E.; Koulouris, A. Chemical–mineralogical characterisation of coarse recycled concrete aggregate. Waste Manag. 2007, 27, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.W.; Tam, C.; Le, K. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour. Conserv. Recycl. 2007, 50, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Angulo, S.C.; Ulsen, C.; John, V.M.; Kahn, H.; Cincotto, M.A. Chemical—mineralogical characterization of C & D waste recycled aggregates from São Paulo, Brazil. Waste Manag. 2009, 29, 721–730. [Google Scholar]
- Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; Jorge, D.B. Physical–chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2013, 52, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Courard, L.; Rondeux, M.; Zhao, Z.; Michel, F. Use of Recycled Fine Aggregates from C&DW for Unbound Road Sub-Base. Materials 2020, 13, 2994. [Google Scholar]
- Medina, C.; Zhu, W.; Howind, T.; Frías, M.; De Rojas, M.I.S. Effect of the constituents (asphalt, clay materials, floating particles and fines) of construction and demolition waste on the properties of recycled concretes. Constr. Build. Mater. 2015, 79, 22–33. [Google Scholar] [CrossRef]
- Sanchez-Cotte, E.H.; Fuentes, L.; Martinez-Arguelles, G.; Quintana, H.A.R.; Walubita, L.F.; Cantero-Durango, J.M. Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Constr. Build. Mater. 2020, 259, 120427. [Google Scholar] [CrossRef]
- Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.; Zavadil, R.; Razaqpur, A.; Foo, S. Quantification of the residual mortar content in recycled concrete aggregates by image analysis. Mater. Charact. 2009, 60, 716–728. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Sikora, P.; Rucinska, T.; Stephan, D.; Elrahman, M.A. Comparison of the pore size distributions of concretes with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 2020, 162, 110182. [Google Scholar] [CrossRef]
- Šťastná, A.; Šachlová, Š.; Pertold, Z.; Přikryl, R.; Leichmann, J. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali—Silica reaction. Mater. Charact. 2012, 65, 115–125. [Google Scholar] [CrossRef]
- Lagares, R. Determinación de la Influencia de las Características Químicas de los Agregados Reciclados de Concreto Como Llenante en Concretos Hidráulicos y Asfálticos (Determination of the Influence of the Chemical Characteristics of Recycled Concrete Aggregates as Fillers in Hydraulic and Asphalt Concretes). Master’s Thesis, Universidad del Norte, Barranquilla, Colombia, 2017. [Google Scholar]
- Moschopedis, S.E.; Speight, J.G. Influence of metal salts on bitumen oxidation. Fuel 1978, 57, 235–240. [Google Scholar] [CrossRef]
- Ebberts, A.R. Oxidation of Asphalt in Thin Films. Ind. Eng. Chem. 1942, 34, 1048–1051. [Google Scholar] [CrossRef]
- Herold, M.; Roberts, D.; Noronha, V.; Smadi, O. Imaging spectrometry and asphalt road surveys. Transp. Res. Part C Emerg. Technol. 2008, 16, 153–166. [Google Scholar] [CrossRef]
- Qing, Y.; Yu, K.; Zhang, Z. Expansion of ordinary Portland cement paste varied with nano-MgO. Constr. Build. Mater. 2015, 78, 189–193. [Google Scholar]
- Segarra Foradada, J. Envejecimiento de Presas por Reacciones Expansivas en Hormigón (Aging in the Dam Due to Expansive Reactions in the Concrete); Universitat Politécnica de Catalunya: Barcelona, Spain, 2005. [Google Scholar]
- Santos, M.B.; De Brito, J.; Silva, A.S. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete. Materials 2020, 13, 2625. [Google Scholar] [CrossRef]
- He, Z.; Tang, S.; Zhao, G.; Chen, E. Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Constr. Build. Mater. 2016, 127, 596–606. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, F.; Amirkhanian, S.; Singh, D. Moisture characteristics of mixtures with warm mix asphalt technologies—A review. Constr. Build. Mater. 2017, 142, 148–161. [Google Scholar] [CrossRef]
- Andrzejuk, W.; Szewczak, A.; Fic, S.; Łagód, G. Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics. Materials 2020, 13, 3799. [Google Scholar] [CrossRef] [PubMed]
- Won, M. Performance of Continuously Reinforced Concrete Pavement Containing Recycled Concrete Aggregate; Texas Department of Transportation: Austin, TX, USA, 2001.
- Bhusal, S.; Li, X.; Wen, H. Evaluation of Effects of Recycled Concrete Aggregate on Volumetrics of Hot-Mix Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2011, 2205, 36–39. [Google Scholar] [CrossRef]
- Pérez, I.; Pasandín, A.R.; Gallego, J. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste. Waste Manag. Res. 2012, 30, 3–11. [Google Scholar] [CrossRef]
- Zulkati, A.; Wong, Y.D.; Sun, D.D. Mechanistic Performance of Asphalt-Concrete Mixture Incorporating Coarse Recycled Concrete Aggregate. J. Mater. Civ. Eng. 2013, 25, 1299–1305. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Zhu, J.; Wang, D. Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Mater. Pavement Des. 2013, 14, 679–688. [Google Scholar] [CrossRef]
- Chen, M.J.; Wong, Y.D. Porous Asphalt Mixture with a Combination of Solid Waste Aggregates. J. Mater. Civ. Eng. 2015, 27, 04014194. [Google Scholar] [CrossRef]
- Qasrawi, H.; Asi, I. Effect of bitumen grade on hot asphalt mixes properties prepared using recycled coarse concrete aggregate. Constr. Build. Mater. 2016, 121, 18–24. [Google Scholar] [CrossRef]
- Bianchini, G.; Marrocchino, E.; Tassinari, R.; Vaccaro, C. Recycling of construction and demolition waste materials: A chemical—mineralogical appraisal. Waste Manag. 2005, 25, 149–159. [Google Scholar] [CrossRef]
- Bui, N.K. Enhancement of Recycled Aggregate Concrete Properties by a New Treatment Method. Int. J. Geomate 2018, 14, 68–76. [Google Scholar] [CrossRef]
- Martinez-Arguelles, G.; Coll, M.D.; Pumarejo, L.G.F.; Cotte, E.H.S.; Rondon, H.; Pacheco, C.A.; Martinez, J.Y.; Espinoza, R.G.L. Characterization of Recycled Concrete Aggregate as Potential Replacement of Natural Aggregate in Asphalt Pavement. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 102045. [Google Scholar]
- INVIAS. Artículo 450, Mezclas Asfálticas en Caliente de Gradación Contínua, Especificaciones Generales Para la Construcción de Carreteras (Article 450, Continuous Grade Hot Asphalt Mixes, General Specifications for Road Construction); INVIAS: Bogotá, Colombia, 2013.
- Paranavithana, S.; Mohajerani, A. Effects of recycled concrete aggregates on properties of asphalt concrete. Resour. Conserv. Recycl. 2006, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Juan, M. Estudio Sobre la Utilización de Árido Reciclado Para la Fabricación de Hormigón Estructural (Study on the Use of Recycled Aggregate for the Manufacture of Structural Concrete). Ph.D. Thesis, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Madrid, Spain, 2004. [Google Scholar]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D.; Chen, L.; Zhang, M.; Yu, J. Investigation on the properties of aggregate-mastic interfacial transition zones (ITZs) in asphalt mixture containing recycled concrete aggregate. Constr. Build. Mater. 2020, 121257. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Shao, W. Effect of mixed chlorides on the degradation and sulfate diffusion of cast-in-situ concrete due to sulfate attack. Constr. Build. Mater. 2018, 181, 49–58. [Google Scholar] [CrossRef]
- Mercado, R.; Fuentes, L. Asphalt emulsions formulation: State-of-the-art and dependency of formulation on emulsions properties. Constr. Build. Mater. 2016, 123, 162–173. [Google Scholar]
- Petersen, J.C.; Harnsberger, P.M. Asphalt Aging: Dual Oxidation Mechanism and Its Interrelationships with Asphalt Composition and Oxidative Age Hardening. Transp. Res. Rec. J. Transp. Res. Board 1998, 1638, 47–55. [Google Scholar] [CrossRef]
- Petersen, J.C. Asphalt oxidation -An overview including a new model for oxidation proposing that physicochemical factors dominate the oxidation kinetics. Fuel Sci. Technol. Int. 1993, 11, 57–87. [Google Scholar] [CrossRef]
- Groggins, P.H. Unit Processes in Organic Synthesis; McGraw Hill: New York, NY, USA, 1958. [Google Scholar]
- Bassani, M.; Tefa, L.; Coppola, B.; Palmero, P. Alkali-activation of aggregate fines from construction and demolition waste: Valorisation in view of road pavement subbase applications. J. Clean. Prod. 2019, 234, 71–84. [Google Scholar] [CrossRef]
- Bednarik, V.; Vondruska, M.; Koutny, M. Stabilization/solidification of galvanic sludges by asphalt emulsions. J. Hazard. Mater. 2005, 122, 139–145. [Google Scholar] [CrossRef]
- Cervinkova, M.; Vondruska, M.; Bednarik, V.; Pazdera, A. Stabilization/solidification of munition destruction waste by asphalt emulsion. J. Hazard. Mater. 2007, 142, 222–226. [Google Scholar] [CrossRef]
- Modarres, A.; Ayar, P. Coal waste application in recycled asphalt mixtures with bitumen emulsion. J. Clean. Prod. 2014, 83, 263–272. [Google Scholar] [CrossRef]
- Al-Futaisi, A.; Jamrah, A.; Yaghi, B.; Taha, R. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. J. Hazard. Mater. 2007, 141, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.J.; Alves, F.C.; De França, F.P. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag. Res. 2012, 30, 1016–1030. [Google Scholar] [CrossRef]
- Karamalidis, A.K.; Voudrias, E.A. Release of Zn, Ni, Cu, SO42− and CrO42− as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge. J. Hazard. Mater. 2007, 141, 591–606. [Google Scholar] [CrossRef]
Reference | Test | ||||
---|---|---|---|---|---|
Specific Gravity Bulk (Fine Aggregate) | Specific Gravity Bulk (Coarse Aggregate) | LA Abrasion Test (%) | Absorption of Fine Aggregate, <4 mm (%) | Absorption of Coarse Aggregate (>4 mm) (%) | |
[26] | 2.37 | 2.45~2.48 | 32~38 | 7.9 | 3.9~4.1 |
[27] | 2.092 | 2.412 | 22 | – | – |
[28] | 2.63 | 2.63 | 34 | 6.1 | 6.1 |
[29] | 2.32 | 2.32 | 32 | 4.9 | 4.9 |
[30] | 2.591 | 2.591 | 33.6 | 6.91 | 6.91 |
[31] | 2.32 | 2.32 | 32.3 | 8.52 | 4.88 |
[32] | 2.28 | 2.28 | 31 | 5.8 | 5.8 |
Reference | XRF Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Al2O3 | Fe2O3 | Na2O | MgO | SO3 | K2O | TiO2 | MnO | |
[33] | 42.95–38.65 | 22.8–19.24 | 8.85–7.26 | 3.63–3.09 | 1.06–0.94 | 5.11–4.63 | – | 1.6–1.31 | 0.39–0.29 | 0.15–0.12 |
[8] | 68.4 | 5.8 | 11.2 | 3.3 | 1.7 | 1 | 0.2 | 3.2 | – | – |
68.6 | 6.5 | 10.2 | 3.3 | 1.6 | 1.2 | 0.3 | 2.8 | – | – | |
65.3 | 8.2 | 10.1 | 3.3 | 1.4 | 1.6 | 0.2 | 2.6 | – | – | |
65.6 | 8.8 | 9.3 | 3.2 | 0.9 | 1.2 | 0.2 | 2.7 | – | – | |
[11] | 58.29 | 13.27 | 7.69 | 6.12 | 1.45 | 2.28 | 0.92 | 0.8 | 0 | 0.16 |
[34] | 62.56 | 12.01 | 12.52 | 5.82 | 2.69 | 1.83 | – | 1.3 | 0.62 | 0.12 |
HMA-25 | Sieve (mm) | 25 | 19 | 12.5 | 9.5 | 4.75 | 2 | 0.425 | 0.18 | 0.075 |
---|---|---|---|---|---|---|---|---|---|---|
% pass | Upper Limit | 100 | 95 | 85 | 77 | 59 | 45 | 25 | 17 | 8 |
Lower Limit | 100 | 80 | 67 | 60 | 43 | 29 | 14 | 8 | 4 |
Sieve (mm) | Fraction | 100% NA | 85% NA–15% RCA | 70% NA–30% RCA | 55% NA–45% RCA | |||
---|---|---|---|---|---|---|---|---|
NA % | RCA % | NA % | RCA % | NA % | RCA % | |||
19 | Coarse | 14 | 11.9 | 2.1 | 9.8 | 4.2 | 7.7 | 6.3 |
12.5 | 17 | 14.5 | 2.6 | 11.9 | 5.1 | 9.4 | 7.7 | |
9.5 | 8.5 | 7.2 | 1.3 | 6 | 2.6 | 4.7 | 3.8 | |
4.75 | 10 | 8.5 | 1.5 | 7 | 3 | 5.5 | 4.5 | |
NS | Fine | 4 | 4 | 0 | 4 | 0 | 4 | 0 |
NWS | 43 | 43 | 43 | 43 | ||||
Filler | – | 3.5 | 3.5 | 3.5 | 3.5 |
Sieve Size (mm) | NA | RCAP | RCAB | |||
---|---|---|---|---|---|---|
Specific Gravity | Water Absorption (%) | Specific Gravity | Water Absorption (%) | Specific Gravity | Water Absorption (%) | |
25.0–19.0 | 2.671 | 1.105 | 2.342 | 4.663 | 2.306 | 5.95 |
19.0–12.5 | 2.669 | 1.11 | 2.338 | 4.9 | 2.302 | 6.257 |
12.5–9.5 | 2.671 | 1.139 | 2.278 | 5.604 | 2.281 | 6.423 |
9.5–4.75 | 2.641 | 1.202 | 2.258 | 6.074 | 2.275 | 6.617 |
Main Constituents | (%) | ||
---|---|---|---|
NA | RCAB | RCAP | |
Na2O | 5.45 | 7.1 | 7.1 |
MgO | 2.73 | 5.73 | 4.85 |
Al2O3 | 12 | 8.65 | 7.85 |
SiO2 | 49.88 | 34.43 | 32.13 |
SO3 | 1.6 | 0.7 | 0.75 |
K2O | 0.99 | 1.03 | 1.05 |
CaO | 20.85 | 39.08 | 43.1 |
TiO2 | 0.33 | 0.16 | 0.13 |
MnO | 0.17 | 0.05 | 0.05 |
Fe2O3 | 5.85 | 3.06 | 3.01 |
Aggregate | Size (mm) | NO3− (mg/L) | SO4−2 (mg/L) | Cl− (mg/L) |
---|---|---|---|---|
NA | 25.0–19.0 | 0.7 | 114 | 21 |
19.0–12.5 | 1 | 113 | 135 | |
12.5–9.5 | 0.8 | 63 | 43.75 | |
9.5–4.75 | 1.4 | 43 | 35.75 | |
RCAB | 25.0–19.0 | 1.1 | 37 | 242 |
19.0–12.5 | 0.8 | 33 | 166 | |
12.5–9.5 | 0.9 | 49 | 153 | |
9.5–4.75 | 0.9 | 45 | 154 | |
RCAP | 25.0–19.0 | 3.13 | 16 | 482.5 |
19.0–12.5 | 1.6 | 31 | 217 | |
12.5–9.5 | 1 | 33 | 269 | |
9.5–4.75 | 0.8 | 44 | 213 |
Aggregate | Size (mm) | Fe | Al | Si | Ti | Ca | Pb | Zn | Ni | Mg | Mn | Hg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NA | 25.0–19.0 | 135.5 | 13.9 | 1777 | 1.89 | 172.9 | <0.3 | 0.3 | <0.1 | 16.9 | 5.2 | – |
19.0–12.5 | 173.2 | 16.2 | 1966 | 1.18 | 230.2 | <0.3 | 0.4 | <0.1 | 17.1 | 5.7 | <10 | |
12.5–9.5 | 184.5 | 15.2 | 2008 | 1.18 | 177.6 | <0.3 | 0.4 | <0.1 | 11 | 5.3 | <10 | |
9.5–4.75 | 169.8 | 16.5 | 2460 | 1.09 | 139.2 | <0.3 | 0.3 | <0.1 | 9.32 | 5.1 | <10 | |
RCAB | 25.0–19.0 | 54.62 | 15.9 | 854.4 | 1.45 | 314.7 | <0.3 | 0.2 | <0.1 | 62.1 | 1.2 | <10 |
19.0–12.5 | 60.87 | 17.8 | 1886 | 1.18 | 317.4 | <0.3 | 0.2 | <0.1 | 61.3 | 1.5 | <10 | |
12.5–9.5 | 46.48 | 18.6 | 1476 | 1.36 | 327.5 | <0.3 | 0.2 | <0.1 | 40.2 | 1.6 | <10 | |
9.5–4.75 | 73.09 | 19.8 | 1415 | <1.00 | 389.8 | <0.3 | 0.3 | <0.1 | 38.8 | 1.5 | 11.6 | |
RCAP | 25.0–19.0 | 73.31 | 22.4 | 1142 | <1.00 | 359.5 | <0.3 | 0.2 | <0.1 | 54.5 | 1.5 | <10 |
19.0–12.5 | 61.38 | 13 | 1236 | <1.00 | 320.2 | <0.3 | 0.1 | <0.1 | 45.1 | 1.6 | <10 | |
12.5–9.5 | 53.38 | 14.2 | 1123 | 1.8 | 284.7 | <0.3 | 0.1 | <0.1 | 39.8 | 1.4 | <10 | |
9.5–4.75 | 54.04 | 10.8 | 1316 | <1.00 | 305.5 | <0.3 | 0.1 | <0.1 | 36 | 1.3 | <10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Cotte, E.H.; Pacheco-Bustos, C.A.; Fonseca, A.; Triana, Y.P.; Mercado, R.; Yepes-Martínez, J.; Lagares Espinoza, R.G. The Chemical-Mineralogical Characterization of Recycled Concrete Aggregates from Different Sources and Their Potential Reactions in Asphalt Mixtures. Materials 2020, 13, 5592. https://doi.org/10.3390/ma13245592
Sánchez-Cotte EH, Pacheco-Bustos CA, Fonseca A, Triana YP, Mercado R, Yepes-Martínez J, Lagares Espinoza RG. The Chemical-Mineralogical Characterization of Recycled Concrete Aggregates from Different Sources and Their Potential Reactions in Asphalt Mixtures. Materials. 2020; 13(24):5592. https://doi.org/10.3390/ma13245592
Chicago/Turabian StyleSánchez-Cotte, Edgar H., Carlos Albeiro Pacheco-Bustos, Ana Fonseca, Yaneth Pineda Triana, Ronald Mercado, Julián Yepes-Martínez, and Ricardo Gabriel Lagares Espinoza. 2020. "The Chemical-Mineralogical Characterization of Recycled Concrete Aggregates from Different Sources and Their Potential Reactions in Asphalt Mixtures" Materials 13, no. 24: 5592. https://doi.org/10.3390/ma13245592
APA StyleSánchez-Cotte, E. H., Pacheco-Bustos, C. A., Fonseca, A., Triana, Y. P., Mercado, R., Yepes-Martínez, J., & Lagares Espinoza, R. G. (2020). The Chemical-Mineralogical Characterization of Recycled Concrete Aggregates from Different Sources and Their Potential Reactions in Asphalt Mixtures. Materials, 13(24), 5592. https://doi.org/10.3390/ma13245592