Fabrication of Porous Anodic Alumina (PAA) by High-Temperature Pulse-Anodization: Tuning the Optical Characteristics of PAA-Based DBR in the NIR-MIR Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lin, H.-Y.; Chen, K.-J.; Wang, S.-W.; Lin, C.-C.; Wang, K.-Y.; Li, J.-R.; Lee, P.-T.; Shih, M.-H.; Li, X.; Chen, H.-M.; et al. Improvement of light quality by DBR structure in white LED. Opt. Express 2015, 23, A27–A33. [Google Scholar] [CrossRef]
- Oh, J.R.; Cho, S.-H.; Lee, Y.-H.; Do, Y.-R. Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter. Opt. Express 2009, 17, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.S.; Saravanan, S.; Kalainathan, S. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating. Aip Adv. 2014, 4, 127121. [Google Scholar]
- Zhou, L.; Zuo, Y.H.; Zhou, C.L.; Li, H.L.; Diao, H.W.; Wang, W.J. A highly efficient light-trapping structure for thin-film silicon solar cells. Sol. Energy 2010, 84, 110–115. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Carro, P.; Mele, E.; Cingolani, R.; Pisignano, D. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Opt. Express 2006, 14, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-C.; Hashemi, E.; Hong, K.-B.; Bengtsson, J.; Gustavsson, J.; Haglund, Å.; Lu, T.-C. Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors. ACS Photonics 2020, 7, 861–866. [Google Scholar] [CrossRef]
- Schubert, M.F.; Xi, J.Q.; Kim, J.K.; Schubert, E.F. Distributed Bragg reflector consisting of high- and low refractive- index thin film layers made of the same material. Appl. Phys. Lett. 2007, 90, 141115. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.J.; Song, Y.M.; Yeo, C.I.; Park, C.Y.; Lee, Y.T. Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition. Opt. Mater. Express 2011, 1, 451–457. [Google Scholar] [CrossRef]
- Leem, J.W.; Yu, J.S. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition. Opt. Express 2012, 20, 20576–20581. [Google Scholar] [CrossRef]
- Leem, J.W.; Guan, X.-Y.; Yu, J.S. Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications. Opt. Express 2014, 22, 18519–18526. [Google Scholar] [CrossRef]
- Kwon, H.; Lee, S.H.; Kim, J.K. Three-dimensional metal-oxide nanohelix arrays fabricated by oblique angle deposition: Fabrication, properties, and applications. Nanoscale Res. Lett. 2015, 10, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef] [Green Version]
- Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef] [PubMed]
- Acosta, L.K.; Bertó-Roselló, F.; Xifre-Perez, E.; Law, C.S.; Santos, A.; Ferré-Borull, J.; Marsal, L.F. Tunable nanoporous anodic alumina photonic crystals by Gaussian pulse anodization. ACS Appl. Mater. Interfaces 2020, 12, 19778–19787. [Google Scholar] [CrossRef]
- Kumeria, T.; Rahman, M.M.; Santos, A.; Ferreé-Borrull, J.; Marsal, L.F.; Losic, D. Nanoporous Anodic alumina rugate filters for sensing of ionic mercury: Toward environmental point-of-analysis systems. ACS Appl. Mater. Interfaces 2014, 6, 12971–12978. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Law, C.S.; Williamson, N.H.; Kempson, I.; Popat, A.; Kumeria, T.; Santos, A. Environmental copper sensor based on polyethylenimine-functionalized nanoporous anodic alumina interferometers. Anal. Chem. 2019, 91, 5011–5020. [Google Scholar] [CrossRef]
- Acosta, L.K.; Bertó-Roselló, F.; Xifre-Perez, E.; Santos, A.; Ferré-Borull, J.; Marsal, L.F. Stacked nanoporous anodic alumina gradient-index filters with tunable multispectral photonic stopbands as sensing platforms. ACS Appl. Mater. Interfaces 2019, 11, 3360–3371. [Google Scholar] [CrossRef]
- Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Li, J.; Wang, C.; Losic, D. Biomimetic nanoporius anodic alumina distributed Bragg reflectors in the form of films and microsized particles for sensing applications. ACS Appl. Mater. Interfaces 2015, 7, 19816–19824. [Google Scholar] [CrossRef]
- Kumeria, T.; Rahman, M.M.; Santos, A.; Ferreé-Borrull, J.; Marsal, L.F.; Losic, D. Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal. Chem. 2014, 86, 1837–1844. [Google Scholar] [CrossRef]
- Santos, A.; Yoo, J.H.; Rohatgi, C.V.; Kumeria, T.; Wang, Y.; Losic, D. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodization. Nanoscale 2016, 8, 1360–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Wang, Q. High sensitivity gas sensing method based on slow light in photonic crystal waveguide. Sens. Actuators B 2012, 173, 28–31. [Google Scholar] [CrossRef]
- Jannesari, R.; Ranacher, C.; Consani, C.; Grille, T.; Jakoby, B. Sensitivity optimization of a photonic crystal ring resonator for gas sensing applications. Sens. Actuators A 2017, 264, 347–351. [Google Scholar] [CrossRef]
- Kraeh, C.; Martinez-Hurtado, J.L.; Popescu, A.; Hedler, H.; Finley, J.J. Slow light enhanced gas sensing in photonic crystals. Opt. Mater. 2018, 76, 106–110. [Google Scholar] [CrossRef]
- Popa, D.; Udrea, F. Towards integrated mid-infrared gas sensors. Sensors 2019, 19, 2076. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Białek, E.; Włodarski, M.; Norek, M. Influence of anodization temperature on geometrical and optical properties of porous anodic alumina (PAA)-based photonic structures. Materials 2020, 13, 3185. [Google Scholar] [CrossRef]
- Ozin, G.A.; Arsenault, A. Nanochemistry: A Chemical Approach to Nanomaterials, 2nd ed.; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Li, W.L.; Tian, S.B.; Zhu, F. Sulfonic acid functionalized nano-γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of 3-substituted-2H-1,4-benzothiazines. Sci. World J. 2013, 6, 838374. [Google Scholar]
- Wang, H.-K.; Yi, C.-Y.; Tian, L.; Wang, W.-J.; Fang, J.; Zhao, J.-H.; Shen, W.-G. Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J. Nanomater. 2012, 6, 453915. [Google Scholar] [CrossRef] [Green Version]
- Włodarski, M.; Putkonen, M.; Norek, M. Infrared absorption study of Zn-S hybrid and ZnS ultrathin films deposited on poorus AAO ceramic support. Coatings 2020, 10, 459. [Google Scholar] [CrossRef]
- Yoshioka, S.; Nakano, T.; Nozue, Y.; Kinoshita, S. Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth, J.R. Sic. Interface 2008, 5, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stępniowski, W.J.; Zasada, S.; Bojar, Z. First step of anodization influences the final nanopore arrangement in anodized alumina. Surf. Coat. Technol. 2011, 206, 1416–1422. [Google Scholar]
- Blum, O.; Fritz, I.J.; Dawson, L.R.; Howard, A.J.; Headley, T.J.; Klem, J.F.; Drummond, T.J. Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates. Appl. Phys. Lett. 1995, 66, 329–331. [Google Scholar] [CrossRef]
- Sulka, G.D.; Stępniowski, W.J. Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 2009, 54, 3683–3691. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Bojar, Z. Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett. 2013, 111, 20–23. [Google Scholar] [CrossRef]
- Sulka, G.D.; Hnida, K. Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 2012, 23, 075303. [Google Scholar] [CrossRef]
- Paternò, G.M.; Manfredi, G.; Scotognella, F.; Lanzani, G. Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control. APL Photon. 2020, 5, 080901. [Google Scholar] [CrossRef]
Sample | Temperature [°C] | UH [V] | tH [s] | UL [V] | tL [s] | UH->UL [V/s] | λ1obs [nm] (T) | λ2obs [nm] (T) |
---|---|---|---|---|---|---|---|---|
PAA-29 °C | 29 | 50 | 360 | 20 | 480 | 0.078 | - | 4042 (0.14) |
PAA_45-20 | 30 | 45 | 360 | 20 | 480 | 0.234 | - | 3220 (0.08) |
PAA_40-15 | 30 | 40 | 360 | 15 | 480 | 0.234 | 5110 (0.31) | 2645 (0.08) |
PAA_180-480 | 30 | 50 | 180 | 20 | 480 | 0.234 | 5183 (0.10) | 2697 (0.20) |
Sample | DdH [nm] | DdL [nm] | DcH [nm] | DcL [nm] | PH [%] | PL [%] | dHinit [nm] | dLinit [nm] | [nm] | [nm] |
---|---|---|---|---|---|---|---|---|---|---|
PAA-29 °C | 36 ± 3 | 25 ± 5 | 105 ± 8 | 48 ± 5 | 11 ± 3 | 24 ± 12 | 3182 | 574 | 2737 | 518 |
PAA_45-20 | 38 ± 5 | 25 ± 5 | 103 ± 7 | 48 ± 5 | 13 ± 5 | 24 ± 12 | 2826 | 618 | 1803 | 562 |
PAA_40-15 | 39 ± 7 | 21 ± 5 | 98 ± 7 | 42 ± 5 | 14 ± 5 | 21 ± 13 | 2165 | 310 | 1594 | 308 |
PAA_180-480 | 43 ± 4 | 25 ± 5 | 105 ± 5 | 48 ± 5 | 15 ± 4 | 24 ± 12 | 1798 | 618 | 1463 | 595 |
Sample | nH * | nL * | neff | λ1 [nm] | λ2 [nm] | λ′1 [nm] | λ′2 [nm] |
---|---|---|---|---|---|---|---|
PAA-29 °C | 1.67 | 1.55 | 1.65 | 12,408 | 6204 | 10,748 | 5374 |
PAA_45-20 | 1.65 | 1.55 | 1.63 | 11,242 | 5621 | 7692 | 3846 |
PAA_40-15 | 1.64 | 1.57 | 1.63 | 8076 | 4038 | 6197 | 3099 |
PAA_180-480 | 1.63 | 1.55 | 1.61 | 7779 | 3890 | 6612 | 3306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białek, E.; Włodarski, M.; Norek, M. Fabrication of Porous Anodic Alumina (PAA) by High-Temperature Pulse-Anodization: Tuning the Optical Characteristics of PAA-Based DBR in the NIR-MIR Region. Materials 2020, 13, 5622. https://doi.org/10.3390/ma13245622
Białek E, Włodarski M, Norek M. Fabrication of Porous Anodic Alumina (PAA) by High-Temperature Pulse-Anodization: Tuning the Optical Characteristics of PAA-Based DBR in the NIR-MIR Region. Materials. 2020; 13(24):5622. https://doi.org/10.3390/ma13245622
Chicago/Turabian StyleBiałek, Ewelina, Maksymilian Włodarski, and Małgorzata Norek. 2020. "Fabrication of Porous Anodic Alumina (PAA) by High-Temperature Pulse-Anodization: Tuning the Optical Characteristics of PAA-Based DBR in the NIR-MIR Region" Materials 13, no. 24: 5622. https://doi.org/10.3390/ma13245622
APA StyleBiałek, E., Włodarski, M., & Norek, M. (2020). Fabrication of Porous Anodic Alumina (PAA) by High-Temperature Pulse-Anodization: Tuning the Optical Characteristics of PAA-Based DBR in the NIR-MIR Region. Materials, 13(24), 5622. https://doi.org/10.3390/ma13245622