Influence of The Segregation Phenomenon on Structural Efficiency of Lightweight Aggregate Concretes
Abstract
:1. Introduction
2. Materials
3. Methodology
3.1. Manufacturing and Preparation of the Concrete Specimens
3.2. Photographing and Image Analyses Phase
3.3. Compressive Strength Test
3.4. Compressive Strength Evaluation
3.5. Structural Efficiency Evaluation
4. Results and Discussion
4.1. Compressive Strength
4.2. Position of the Critical Section
4.3. Structural Efficiency
5. Conclusions
- The manufacturing of the samples in two layers ensured a homogeneity of the mixture inside of the samples and consequently avoided an excessive reduction of compressive strength.
- The decrease in the compressive strength was observed with more evidence from segregation indexes above 25%. Other compressive strength tests considering specimens with standard dimensions instead of the cores extracted from the samples could explain this phenomenon more precisely.
- Concretes manufactured in one layer presented higher reductions of compressive strength due to segregation than concretes manufactured in two layers.
- For all structural efficiency parameters analysed (, and ), the concretes that were vibrated in two layers presented higher values when compared to the concretes that were vibrated in one layer.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, W.; Cui, W.; Qi, L. Effect of aggregate gradation and mortar rheology on static segregation of self-compacting concrete. Constr. Build. Mater. 2020, 259, 119816. [Google Scholar] [CrossRef]
- Peng, Y.; Jacobsen, S. Influence of water/cement ratio, admixtures and filler on sedimentation and bleeding of cement paste. Cem. Concr. Res. 2013, 54, 133–142. [Google Scholar] [CrossRef]
- Peng, Y.; Lauten, R.A.; Reknes, K.; Jacobsen, S. Bleeding and sedimentation of cement paste measured by hydrostatic pressure and Turbiscan. Cem. Concr. Compos. 2017, 76, 25–38. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J. Compressive Strength Variations in Lightweight Aggregate Concrete Samples Affected by Segregation Caused by Excessive Vibration. Key Eng. Mater. 2019, 821, 493–499. [Google Scholar] [CrossRef]
- Navarrete, I.; Lopez, M. Understanding the relationship between the segregation of concrete and coarse aggregate density and size. Constr. Build. Mater. 2017, 149, 741–748. [Google Scholar] [CrossRef]
- Solak, A.; Tenza-Abril, A.; Saval, J.; García-Vera, V. Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete. Sustainability 2018, 10, 4304. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Gibbs, J.C.; Bartos, P.J.M. Uniformity of in situ properties of self-compacting concrete in full-scale structural elements. Cem. Concr. Compos. 2001, 23, 57–64. [Google Scholar] [CrossRef]
- Tenza-Abril, A.J.; Benavente, D.; Pla, C.; Baeza-Brotons, F.; Valdes-Abellan, J.; Solak, A.M. Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Constr. Build. Mater. 2020, 238, 117642. [Google Scholar] [CrossRef]
- Tenza-Abril, A.J.; Villacampa, Y.; Solak, A.M.; Baeza-Brotons, F. Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018, 189, 1173–1183. [Google Scholar] [CrossRef]
- Panesar, D.K.K.; Shindman, B. The effect of segregation on transport and durability properties of self consolidating concrete. Cem. Concr. Res. 2012, 42, 252–264. [Google Scholar] [CrossRef]
- Peng, Y.; Jacobsen, S.; De Weerdt, K.; Pedersen, B. Model and Test Methods for Stability of Fresh Cement Paste. Adv. Civ. Eng. Mater. 2014, 3, 1–24. [Google Scholar] [CrossRef]
- Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R. Patterns of gravity induced aggregate migration during casting of fluid concretes. Cem. Concr. Res. 2012, 42, 1571–1578. [Google Scholar] [CrossRef]
- Bogas, J.A.; de Brito, J.; Figueiredo, J.M. Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. J. Clean. Prod. 2015, 89, 187–195. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, M.G.; Real, S. Capillary absorption of structural lightweight aggregate concrete. Mater. Struct. 2015, 48, 2869–2883. [Google Scholar] [CrossRef]
- Real, S.; Bogas, J.A. Oxygen permeability of structural lightweight aggregate concrete. Constr. Build. Mater. 2017, 137, 21–34. [Google Scholar] [CrossRef]
- Pla, C.; Tenza-Abril, A.J.; Valdes-Abellan, J.; Benavente, D. Influence of microstructure on fluid transport and mechanical properties in structural concrete produced with lightweight clay aggregates. Constr. Build. Mater. 2018, 171, 388–396. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, A. Compressive behavior and failure modes of structural lightweight aggregate concrete—Characterization and strength prediction. Mater. Des. 2013, 46, 832–841. [Google Scholar] [CrossRef]
- Ke, Y.; Beaucour, A.L.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. [Google Scholar] [CrossRef]
- Yang, C.-C.; Huang, R. Approximate Strength of Lightweight Aggregate Using Micromechanics Method. Adv. Cem. Based Mater. 1998, 7, 133–138. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. CONCRETE: Microstructure, Properties and Materials; Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Zhang, M.-H.; Gjørv, O.E. Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cem. Concr. Res. 1990, 20, 610–618. [Google Scholar] [CrossRef]
- Mena, Q. Towards a structural efficiency classification system. Structures 2020, 26, 298–310. [Google Scholar] [CrossRef]
- Peyvandi, A.; Soroushian, P.; Jahangirnejad, S. Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement. Constr. Build. Mater. 2013, 45, 36–44. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Igba, U.T.; Ayorinde, T.O.; Jimoh, P.O. Structural efficiency of burnt clay bricks containing waste crushed glass and polypropylene granules. Case Stud. Constr. Mater. 2020, 13, e00404. [Google Scholar] [CrossRef]
- Fernández-Fanjul, A.; Tenza-Abril, A.J. Méthode FANJUL: Dosage pondéral des bétons légers et lourds. Ann. Du Bâtiment Des. Trav. Publics 2012, 5, 32–50. [Google Scholar]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; García-Vera, V.E.; Lanzón, M. New insights on the segregation due to manufacture conditions of Lightweight Aggregate Concretes. In Proceedings of the SynerCrete’18: Interdisciplinary Approaches for Cement-Based Materials and Structural Concrete: Synergizing Expertise and Bridging Scales of Space and Time; Azenha, M., Schlicke, D., Benboudjema, F., Jędrzejewska, A., Eds.; RILEM Publications S.A.R.L.: Funchal, Portugal, 2018; pp. 273–278. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J.; Baeza-Brotons, F. A new methodology for determining particle density and absorption of lightweight, normal-weight and heavy weight aggregates in aqueous medium. Constr. Build. Mater. 2017, 146, 630–643. [Google Scholar] [CrossRef]
- AENOR. UNE-EN 1097-3. Ensayos para Determinar las Propiedades Mecánicas y Físicas de los áridos. Parte 3: Determinación de la Densidad Aparente y la Porosidad; Normas UNE; AENOR: Madrid, Spain, 1999. [Google Scholar]
- AENOR. UNE-EN 933-1. Ensayos para Determinar las Propiedades Geométricas de los áridos. Parte 1: Determinación de la Granulometría de las Partículas. Método del Tamizado; AENOR: Madrid, Spain, 2012. [Google Scholar]
- AENOR. UNE-EN 1097-6. Ensayos para Determinar las Propiedades Mecánicas y Físicas de los áridos. Parte 6: Determinación de la Densidad de Partículas y la Absorción de agua; Normas UNE; AENOR: Madrid, Spain, 2014. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J.; Baeza-Brotons, F. A new methodology for determining water absorption of lightweight, normal-weight and heavyweight aggregates in a viscous medium. Constr. Build. Mater. 2018, 165, 596–607. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Benavente, D. Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes. Materials 2019, 12, 3642. [Google Scholar] [CrossRef] [Green Version]
- AENOR. UNE-EN 12390-3—Ensayos de Hormigón Endurecido. Parte 3: Determinación de la Resistencia a Compresión de Probetas; Normas UNE; AENOR: Madrid, Spain, 2009. [Google Scholar]
- AENOR. UNE-EN 12390-1—Ensayos de Hormigón Endurecido. Parte 1: Forma, Medidas y otras Características de las Probetas y Moldes; Normas UNE; AENOR: Madrid, Spain, 2001. [Google Scholar]
- Juradin, S.; Baloevi, G.; Harapin, A. Impact of vibrations on the final characteristics of normal and self-compacting concrete. Mater. Res. 2014, 17, 178–185. [Google Scholar] [CrossRef] [Green Version]
Concrete Identification | Type of LWA | Amount of Fine Aggregate in a Cubic Meter (kg/m3) | Amount of LWA in a Cubic Meter (kg/m3) |
---|---|---|---|
LWAC1 | HS | 723.9 | 416.2 |
LWAC2 | HS | 1046.0 | 294.0 |
LWAC3 | M | 991.1 | 148.9 |
LWAC4 | M | 1234.8 | 105.2 |
Property | Method | Arlita Leca M | Arlita Leca HS | Fine Aggregate |
---|---|---|---|---|
Apparent particle density (kg/ m3) | According to Ref. [27] | 482 | 1019 | 2688 |
Bulk density (kg/ m3) | UNE EN 1097-3 [28] | 269 | 610 | 1610 |
Water absorption (%) | According to Ref. [27] | 36.6 | 12.2 | 0.12 |
Particle size (di/Di) | UNE EN 933-1 [29] | 6/10 | 4/10 | 0/4 |
Crushing strength (MPa) | According the manufacturer | 1.0 | 5.0 | - |
Source | DF | Sum of Squares | Mean Squares | F | Pr > F |
---|---|---|---|---|---|
Model | 3 | 917.26 | 305.76 | 5.53 | 0.001 |
Error | 156 | 8626.39 | 55.30 | - | - |
Corrected Total | 159 | 9543.64 | - | - | - |
Category | LS Means | Standard Error | Lower Bound (95%) | Upper Bound (95%) | Groups | |
---|---|---|---|---|---|---|
10% ≥ SI >20% | 23.34 | 0.84 | 21.67 | 24.99 | A | |
20% ≥ SI >30% | 21.17 | 0.98 | 19.24 | 23.09 | A | B |
30% ≥ SI >40% | 16.33 | 1.92 | 12.53 | 20.12 | B | |
40% ≥ SI >50% | 15.99 | 2.63 | 10.80 | 21.19 | B |
Source | DF | Sum of Squares | Mean Squares | F | Pr > F |
---|---|---|---|---|---|
Model | 3 | 0.0004 | 0.0001 | 10.1978 | 0.0001 |
Error | 156 | 0.0021 | 0.0000 | - | - |
Corrected Total | 159 | 0.0026 | - | - | - |
Category | LS Means | Standard Error | Lower Bound (95%) | Upper Bound (95%) | Groups | |
---|---|---|---|---|---|---|
10% ≥ SI >20% | 0.014 | 0.000 | 0.013 | 0.015 | A | |
20% ≥ SI >30% | 0.012 | 0.000 | 0.011 | 0.013 | B | |
30% ≥ SI >40% | 0.010 | 0.001 | 0.008 | 0.012 | B | |
40% ≥ SI >50% | 0.009 | 0.001 | 0.006 | 0.011 | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solak, A.M.; Tenza-Abril, A.J.; García-Vera, V.E. Influence of The Segregation Phenomenon on Structural Efficiency of Lightweight Aggregate Concretes. Materials 2020, 13, 5754. https://doi.org/10.3390/ma13245754
Solak AM, Tenza-Abril AJ, García-Vera VE. Influence of The Segregation Phenomenon on Structural Efficiency of Lightweight Aggregate Concretes. Materials. 2020; 13(24):5754. https://doi.org/10.3390/ma13245754
Chicago/Turabian StyleSolak, Afonso Miguel, Antonio José Tenza-Abril, and Victoria Eugenia García-Vera. 2020. "Influence of The Segregation Phenomenon on Structural Efficiency of Lightweight Aggregate Concretes" Materials 13, no. 24: 5754. https://doi.org/10.3390/ma13245754
APA StyleSolak, A. M., Tenza-Abril, A. J., & García-Vera, V. E. (2020). Influence of The Segregation Phenomenon on Structural Efficiency of Lightweight Aggregate Concretes. Materials, 13(24), 5754. https://doi.org/10.3390/ma13245754