Characterization of Electrical Traps Formed in Al2O3 under Various ALD Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Del Alamo, J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Brammertz, G.; Sioncke, S.; Fleischmann, C.; Delabie, A.; Martens, K.; Bender, H.; Conard, T.; Tseng, W.H.; Lin, J.C.; et al. Enabling the high-performance InGaAs/Ge CMOS: A common gate stack solution. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Zadeh, D.H.; Oomine, H.; Suzuki, Y.; Kakushima, K.; Ahmet, P.; Nohira, H.; Kataoka, Y.; Nishiyama, A.; Sugii, N.; Tsutsui, K.; et al. La2O3/In0.53Ga0.47As metal–oxide-semiconductor capacitor with low interface state density using TiN/W gate electrode. Solid. State. Electron. 2013, 82, 29–33. [Google Scholar] [CrossRef]
- Taoka, N.; Yokoyama, M.; Kim, S.H.; Suzuki, R.; Iida, R.; Lee, S.; Hoshii, T.; Jevasuwan, W.; Maeda, T.; Yasuda, T.; et al. Impact of Fermi Level Pinning inside Conduction Band on Electron Mobility of InxGa1-xAs MOSFETs and Mobility Enhancement by Pinning Modulation. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 27.2.1–27.2.4. [Google Scholar]
- Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Border Trap Extraction with Capacitance- Equivalent Thickness to Reflect the Quantum Mechanical Effect on Atomic Layer Deposition High-k/In0.53Ga0.47As on 300-mm Si Substrate. Sci. Rep. 2019, 9, 9861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, J.; Lee, J.; Kim, S.; Kim, Y.D.; Jeon, H.; Kim, D.; Kim, Y. Characteristics of Hafnium-Aluminum-Oxide Thin Films Deposited by Using Atomic Layer Deposition with Various Aluminum Compositions. J. Korean Phys. Soc. 2005, 47, 501–507. [Google Scholar]
- Kang, H.K.; Kang, Y.S.; Kim, D.K.; Baik, M.; Song, J.D.; An, Y.; Kim, H.; Cho, M.H. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates. ACS Appl. Mater. Interfaces 2017, 9, 17526–17535. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, D.-H.; Kim, T.-W. Border Trap Characterizations of Al2O3/ZrO2 and Al2O3/HfO2 Bilayer Films Based on Ambient Post Metal Annealing and Constant Voltage Stress. Nanomaterials 2020, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Chobpattana, V.; Mikheev, E.; Zhang, J.Y.; Mates, T.E.; Stemmer, S. Extremely scaled high- k/In0.53 Ga0.47 As gate stacks with low leakage and low interface trap densities. J. Appl. Phys. 2014, 116, 124104. [Google Scholar] [CrossRef] [Green Version]
- Dou, C.; Lin, D.; Vais, A.; Ivanov, T.; Chen, H.; Martens, K.; Kakushima, K.; Iwai, H.; Taur, Y.; Thean, A.; et al. Determination of energy and spatial distribution of oxide border traps in In0.53Ga0.47As MOS capacitors from capacitance–voltage characteristics measured at various temperatures. Microelectron. Reliab. 2014, 54, 746–754. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.Á.; Ram-Mohan, L.Á. Band parameters for III—V compound semiconductors and their alloys. J. Appl. Phys. Appl. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Fleetwood, D.M. Border traps and bias-temperature instabilities in MOS devices. Microelectron. Reliab. 2018, 80, 266–277. [Google Scholar] [CrossRef]
- Gan, J. Extraction of Border Trap Density in InAs Nanowire Transistors. Ph.D. Thesis, Lund University, Lund, Sweden, 2012. [Google Scholar]
- Lin, D.; Alian, A.; Gupta, S.; Yang, B.; Bury, E.; Sioncke, S.; Degraeve, R.; Toledano, M.L.; Krom, R.; Favia, P.; et al. Beyond interface: The impact of oxide border traps on InGaAs and Ge n-MOSFETs. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 28.3.1–28.3.4. [Google Scholar]
- Vais, A.; Martens, K.; Lin, D.; Collaert, N.; Mocuta, A.; DeMeyer, K.; Thean, A. On MOS admittance modeling to study border trap capture/emission and its effect on electrical behavior of high-k/III–V MOS devices. Microelectron. Eng. 2015, 147, 227–230. [Google Scholar] [CrossRef]
- Huang, J.; Goel, N.; Zhao, H.; Kang, C.Y.; Min, K.S.; Bersuker, G.; Oktyabrsky, S.; Gaspe, C.K.; Santos, M.B.; Majhi, P.; et al. InGaAs MOSFET Performance and Reliability Improvement by Simultaneous Reduction of Oxide and Interface Charge in ALD (La)AlOx/ZrO2 Gate Stack. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Kwon, H.-M.; Kwon, S.-K.; Jeong, K.-S.; Oh, S.-K.; Oh, S.-H.; Choi, W.-I.; Kim, T.-W.; Kim, D.-H.; Kang, C.-Y.; Lee, B.H.; et al. A Correlation between Oxygen Vacancies and Reliability Characteristics in a Single Zirconium Oxide Metal-Insulator-Metal Capacitor. IEEE Trans. Electron Devices 2014, 61, 2619–2627. [Google Scholar] [CrossRef]
- Jung, H.-S.; Lee, S.-A.; Rha, S.; Lee, S.Y.; Kim, H.K.; Kim, D.H.; Oh, K.H.; Park, J.-M.; Kim, W.-H.; Song, M.-W.; et al. Impacts of Zr Composition in Hf1-xZrxOy Gate Dielectrics on Their Crystallization Behavior and Bias-Temperature-Instability Characteristics. IEEE Trans. Electron Devices 2011, 58, 2094–2103. [Google Scholar] [CrossRef]
- Mackus, A.J.M.; Schneider, J.R.; MacIsaac, C.; Baker, J.G.; Bent, S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chem. Mater. 2019, 31, 1142–1183. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Faraz, T.; Arts, K.; Kessels, W.M.M. (Erwin) Status and prospects of plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 2019, 37, 030902. [Google Scholar] [CrossRef] [Green Version]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Choi, H.J.; Kim, Y.; Torgersen, J.; An, J.; Lee, M.H.; Prinz, F.B. Process–property relationship in high-k ALD SrTiO3 and BaTiO3: A review. J. Mater. Chem. C 2017, 5, 8000–8013. [Google Scholar] [CrossRef] [Green Version]
- Hiraiwa, A.; Matsumura, D.; Kawarada, H. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant. J. Appl. Phys. 2016, 120, 084504. [Google Scholar] [CrossRef]
- Kim, K.-M.; Jang, J.S.; Yoon, S.-G.; Yun, J.-Y.; Chung, N.-K. Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition. Materials 2020, 13, 2008. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, Y.; Yu, B.; Ahn, J.; McIntyre, P.C.; Asbeck, P.M.; Rodwell, M.J.W.; Taur, Y. Interface-State Modeling of Al2O3–InGaAs MOS From Depletion to Inversion. IEEE Trans. Electron Devices 2012, 59, 2383–2389. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T. Comparison of the interface and border traps of nanolaminate and bilayer structures of Al2O3 and HfO2 on In0.53Ga0.47As. Jpn. J. Appl. Phys. 2019, 58, 120905. [Google Scholar] [CrossRef]
- Lin, J.; Monaghan, S.; Cherkaoui, K.; Povey, I.M.; Sheehan, B.; Hurley, P.K. Examining the relationship between capacitance-voltage hysteresis and accumulation frequency dispersion in InGaAs metal-oxide-semiconductor structures based on the response to post-metal annealing. Microelectron. Eng. 2017, 178, 204–208. [Google Scholar] [CrossRef]
- Trinh, H.; Chang, E.Y.; Wong, Y.; Chang, C.; Yu, C. Self-cleaning Effects on Atomic Layer Deposition (ALD) of Al2O3 on InGaAs with Several Surface Treatments. In Proceedings of the Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, Sendai Kokusai Hotel, Miyagi, Japan, 7–9 October 2009; pp. 478–479. [Google Scholar]
- Gao, J.; Li, W.; Mandal, S.; Chowdhury, S. A study of the effect of surface pretreatment on atomic layer deposited Al2O3 interface with GaN. In Proceedings of the SPIE, San Diego, CA, USA, 23 August 2017; Volume 10381. [Google Scholar]
- Yuan, Y.; Yu, B.; Ahn, J.; McIntyre, P.C.; Asbeck, P.M.; Rodwell, M.J.W.; Taur, Y. A Distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices. IEEE Trans. Electron Devices 2012, 59, 2100–2106. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.; Takenaka, M.; Takagi, S. Impact of La2O3 interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al2O3/La2O3/InGaAs gate stacks deposited by atomic-layer-deposition. J. Appl. Phys. 2015, 118, 085309. [Google Scholar] [CrossRef]
- Birner, S. The Nextnano Software for the Simulation of Semiconductor Heterostructures. Available online: https://www.nextnano.de/downloads/publications/abstracts/Abstract_TopologicalNanodeviceModeling_2014_Delft_Birner.pdf (accessed on 23 August 2020).
- Nicollian, E.H.; Goetzberger, A. The Si-SiO2 Interface—Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique. Bell Syst. Tech. J. 1967, 46, 1055–1133. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, L.; Jia, R.; Tang, X.; Hu, J.; Zhang, Y.; Zhang, Y.; Sun, J. Stress-induced charge trapping and electrical properties of atomic-layer-deposited HfAlO/Ga2O3 metal–oxide–semiconductor capacitors. J. Phys. D Appl. Phys. 2019, 52, 215104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Shin, K.-Y.; Kim, T.-W. Characterization of Electrical Traps Formed in Al2O3 under Various ALD Conditions. Materials 2020, 13, 5809. https://doi.org/10.3390/ma13245809
Rahman MM, Shin K-Y, Kim T-W. Characterization of Electrical Traps Formed in Al2O3 under Various ALD Conditions. Materials. 2020; 13(24):5809. https://doi.org/10.3390/ma13245809
Chicago/Turabian StyleRahman, Md. Mamunur, Ki-Yong Shin, and Tae-Woo Kim. 2020. "Characterization of Electrical Traps Formed in Al2O3 under Various ALD Conditions" Materials 13, no. 24: 5809. https://doi.org/10.3390/ma13245809
APA StyleRahman, M. M., Shin, K. -Y., & Kim, T. -W. (2020). Characterization of Electrical Traps Formed in Al2O3 under Various ALD Conditions. Materials, 13(24), 5809. https://doi.org/10.3390/ma13245809