Optimum Clearance in the Microblanking of Thin Foil of Austenitic Stainless Steel JIS SUS304 Studied from Shear Cut Surface and Punch Load
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Blanking Condition
2.2. FEM Simulation Model and Conditions
3. Results and Discussion
3.1. Results of Blanking Experiment
3.2. Consideration of Cut Surface Generation in Each Clearance by FEM Analysis
3.3. FEM Analysis of the Load on the Punch Tip
4. Conclusions
- As the clearance decreases, the fractured surface of product side the cut surface decreases;
- As the clearance decreases, the load on the punch tip increases;
- CL = −4 μm is the optimum clearance to obtain a product side cut surface with no fracture and to reduce the punch load.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Z.T.; Peng, L.F.; Lai, X.M.; Fu, M.W. Geometry and grain size effects on the forming limit of sheet metals in micro-scaled plastic deformation. Mater. Sci. Eng. A 2014, 611, 345–353. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Guo, Y.Z.; Wei, Q.; Topping, T.D.; Dangelewicz, A.M.; Zhu, Y.T.; Langdon, T.G.; Lavernia, E.J. Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater. Sci. Eng. A 2009, 525, 68–77. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Guo, Y.Z.; Wie, Q.; Dangelewicz, A.M.; Xu, C.; Zhu, Y.T.; Langdon, T.G.; Zhou, Y.Z.; Lavernia, E.J. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 2008, 59, 627–630. [Google Scholar] [CrossRef]
- Wang, J.L.; Fu, M.W.; Shi, S.Q. Influences of size effect and stress condition on ductile fracture behavior in micro-scaled plastic deformation. Mater. Des. 2017, 131, 69–80. [Google Scholar] [CrossRef]
- Sugioka, K. The state of the art and future prospect of ultrafast laser micro-processing. J. Jpn. Soc. Precis. Eng. 2015, 81, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Shikida, M. Overview of Etching Process for Fabricating Microstructures. J. Surf. Finish. Soc. Jpn. 2008, 59, 84–87. [Google Scholar] [CrossRef]
- Ogiso, H.; Nakano, S. Micro Fabrication by Ion Beam. J. Jpn. Soc. Precis. Eng. 2004, 70, 1473–1476. [Google Scholar] [CrossRef]
- Maeda, T.; Nakagawa, T. Experimental Investigations on Fine Blanking 1st Report. J. Jpn. Soc. Technol. Plast. 1968, 9, 618–626. [Google Scholar]
- Maeda, T.; Nakagawa, T. Experimental Investigations on Fine Blanking 2nd Report. J. Jpn. Soc. Technol. Plast. 1968, 9, 627–636. [Google Scholar]
- Bridgmen, P.W. Studies in Large Plastic Flow and Fracture; Harvard University Press: Cambridge, MA, USA, 1952. [Google Scholar]
- Suzuki, Y.; Shiratori, T.; Yang, M.; Murakawa, M. Processing of metal microgear tooth profile by finish blanking and extrusion blanking and evaluation of cut-surface shape. J. Jpn. Soc. Technol. Plast. 2018, 60, 64–69. [Google Scholar] [CrossRef]
- Suzuki, Y.; Shiratori, T.; Yang, M.; Murakawa, M. Elucidation of Shearing Mechanism of Finish-type FB and Extrusion-type FB for Thin Foil of JIS SUS304 by Numerical an EBSD Analyses. Materials 2019, 12, 2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, I. Wear Mechanism of Blanking Tools and Factors Affecting Tool Wear. J. Jpn. Soc. Technol. Plast. 1986, 27, 140–150. [Google Scholar]
- Maeda, T.; Matsuno, K. Wear of punching die. J. Jpn. Soc. Technol. Plast. 1966, 7, 265–273. [Google Scholar]
- Koga, N.; Tsukakoshi, K. Effect of Clearance on Tool Wear During Blanking of High-Tensile-Strength Steel Sheets. J. Jpn. Soc. Technol. Plast. 2014, 55, 48–52. [Google Scholar]
- Mucha, J.; Jaworski, J. The Quality Issue of the Parts Blanked from Thin Silicon Sheets. J. Mater. Eng. Pref. 2017, 26, 1865–1877. [Google Scholar] [CrossRef] [Green Version]
- Mucha, J. An experimental analysis of effects of various material tool’s wear on burr during generator sheets blanking. Int. J. Adv. Manuf. Technol. 2010, 50, 495–507. [Google Scholar] [CrossRef]
- Wei, G.; Hon-Yuen, T. Effects of extended punching on wear of the WC/Co micropunch and the punched microholes. Int. J. Adv. Manuf. Technol. 2012, 59, 955–960. [Google Scholar]
- Hernandez, J.; Franco, P.; Estrems, M.; Faura, F. Modelling and experimental analysis of the effects of tool wear on form errors in stainless steel blanking. J. Mater. Process. Technol. 2006, 180, 143–150. [Google Scholar] [CrossRef]
- Faura, F.; Lopez, J.; Sanes, J.; Garcia, A. Tools life equation for blanking 18-8 stainless steel strips. Rev. Metal. Madrid. 1998, 34, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Yoshida, Y.; Matsuno, T.; Seto, A.; Suehiro, M. Influence of tool edge shape on stress distribution at piecing punch tip. In Proceedings of the 64th Japanese Joint Conference for the Technology of Plasticity, Osaka, Japan, 1–3 November 2013; pp. 309–310. [Google Scholar]
- Hambli, R. Blanking tool wear modeling using the finite element method. Int. J. Mach. Tools Manuf. 2001, 41, 1815–1829. [Google Scholar]
- Falconnet, E.; Makich, H.; Chambert, J.; Monteil, G.; Picart, P. Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear 2012, 296, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Falconnet, E.; Chambert, J.; Makich, H.; Monteil, G. Prediction of abrasive punch wear in copper alloy thin sheet blanking. Wear 2015, 338–339, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Hagihara, S.; Tadano, Y.; Inada, T.; Mori, T.; Fuchiwaki, K. Application of finite element method to analysis of ductile fracture criteria for punched cutting surfaces. Mater. Trans. 2013, 43, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Taupin, E.; Breitling, J.; Wu, W.; Altan, T. Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. J. Mater. Process. Technol. 1996, 59, 68–78. [Google Scholar] [CrossRef]
- Sasada, M.; Shimura, K.; Aoki, I. Study on coefficient of friction between tool and material in Shearing. Trans. Jpn. Soc. Mech. Eng. Ser. C 2005, 71, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, M. Development of Nano-grained hard-metal and application examples. Sokeizai 2011, 52, 28–32. [Google Scholar]
Tensile Strength (MPa) | 896 |
0.2% Proof Stress (MPa) | 583 |
Elongation (%) | 47 |
Composition and Mechanical Properties | Punch | Die |
---|---|---|
Composition | WC-Co | WC-Co |
Hardness (HRA) | 95.0 | 91.5 |
Compressive Stress (MPa) | 6880 | 5400 |
Items | Value |
---|---|
Clearance CL (μm) | 2, 0, −2, −4, −8 (2%t, 0%t, −2%t, −4%t, −8%t) |
Punch outer diameter Dp1 (mm) | 1.748 |
Die inner diameter Dd1 (mm) | 1.752, 1.748, 1.744, 1.740, 1.732 |
Punch outer diameter Dp2 (mm) | 1.740 |
Die inner diameter Dd2 (mm) | 1.750 |
Die radius Rd1 in 1st step (mm) | 0.01 |
Die radius Rd2 in 2nd step (mm) | Nearly zero |
Counterpunch outer diameter Dc (mm) | 1.730 |
Blank holder force (FB) | 500N (50% of blanking force) |
Counterpunch force (FC) | 200N (20% of blanking force) |
Simulation Model | Axisymmetric Model |
---|---|
Object type | Work material: elastic-plastic |
Punch/Die: elastic | |
Blank holder/Stripper: rigid | |
Counterpunch: rigid | |
Clearance CL (μm) | 2, 0, −2, −4, −8, (2%t, 0%t, −2%t, −4%t, −8%t) |
Punch outer diameter Dp (mm) | 1.748 |
Die inner diameter Dd (mm) | 1.752, 1.748, 1.744, 1.740, 1.732 |
Counterpunch outer diameter Dc (mm) | 1.730 |
Work material outer diameter Dw (mm) | 3.5 |
Tool cutting edges | Rp = 0.002 mm, Rd = 0.010 mm |
Blank holder force (FB) | 500 N (50% of blanking force) |
Counterpunch force (FC) | 200 N (20% of blanking force) |
Blanked material | JIS SUS304 t = 0.1 mm Young’s modulus: 193 GPa Poisson’s ratio: 0.3 |
Ductile fracture criteria | Cockcroft–Latham |
Fracture critical value Ccr | 1.5 |
Shear friction coefficient (μ) | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y.; Yang, M.; Murakawa, M. Optimum Clearance in the Microblanking of Thin Foil of Austenitic Stainless Steel JIS SUS304 Studied from Shear Cut Surface and Punch Load. Materials 2020, 13, 678. https://doi.org/10.3390/ma13030678
Suzuki Y, Yang M, Murakawa M. Optimum Clearance in the Microblanking of Thin Foil of Austenitic Stainless Steel JIS SUS304 Studied from Shear Cut Surface and Punch Load. Materials. 2020; 13(3):678. https://doi.org/10.3390/ma13030678
Chicago/Turabian StyleSuzuki, Yohei, Ming Yang, and Masao Murakawa. 2020. "Optimum Clearance in the Microblanking of Thin Foil of Austenitic Stainless Steel JIS SUS304 Studied from Shear Cut Surface and Punch Load" Materials 13, no. 3: 678. https://doi.org/10.3390/ma13030678
APA StyleSuzuki, Y., Yang, M., & Murakawa, M. (2020). Optimum Clearance in the Microblanking of Thin Foil of Austenitic Stainless Steel JIS SUS304 Studied from Shear Cut Surface and Punch Load. Materials, 13(3), 678. https://doi.org/10.3390/ma13030678