Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Production of Hybrid Aluminium Alloy Composite Foam Reinforced with SiC and Graphene
2.2. Aluminium Foam Specimen Characteristics
2.3. Split Hopkinson Pressure Bar Test
2.4. Optimization Methods
3. Results
3.1. Microstructural Studies
3.2. Strain Rate Deformation
3.3. ANOVA Analysis
4. Discussion
5. Conclusions
- ▪
- The compression tests of foam samples indicated the plateau stress of 10 MPa at a strain rate of 500 s−1 and 20 MPa at a strain rate of 2760 s−1 and energy absorption was found in the range of 1–5 MJm-3.
- ▪
- The plateau stress and energy absorption were sensitive to strain rate and insensitive to RD used in the presented work.
- ▪
- There was a two-fold gain in plateau stress and a five-fold gain in energy absorption with an increase of strain rate from 500 s−1 to 2750 s−1
- ▪
- ANOVA was utilized for evaluating the most prominent parameter to contribute to energy absorption. In addition, it has been seen that the contributions of the strain rate on energy absorption were 89.05%, which was the highest amongst the parameters.
- ▪
- RD had less influence on controlling the energy absorption, and it was observed to be only 4.69%. Predictions from ANOVA analysis well agreed with the experimental data.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids, 2nd ed.; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Wu, J.; Li, C.; Wang, D.; Gui, M. Damping and sound absorption properties of particle reinforced Al matrix composite foams. Compos. Sci. Technol. 2003, 63, 569–574. [Google Scholar]
- Alexandra, B.; Yuri, B.; Svyatoslav, G.; Takashi, N. Fabrication method for closed-cell aluminum foam with improved sound absorption ability. Proc. Mater. Sci. 2014, 4, 9–14. [Google Scholar]
- Merrett, R.P.; Langdon, G.S.; Theobald, M.D. The blast and impact loading of aluminum foam. Mater. Des. 2013, 44, 311–319. [Google Scholar] [CrossRef]
- Wang, S.; Ding, Y.; Wang, C.; Zheng, Z.; Yu, J. Dynamic material parameters of closed-cell foams under the high-velocity impact. Int. J. Impact Eng. 2017, 99, 111–121. [Google Scholar] [CrossRef]
- Ramachandra, S.; Sudheer, K.P.; Ramamurthy, U. Impact energy absorption in Al foam at low velocities. Scrip. Mater. 2003, 49, 741–745. [Google Scholar] [CrossRef]
- Fiedler, T.; Al-Sahlani, K.; Linul, P.A.; Linul, E. Mechanical properties of A356 and ZA27 metallic syntactic foams at cryogenic temperature. J. Alloys Compd. 2019, 813, 152181. [Google Scholar]
- Xia, Z.; Wang, X.; Fan, H.; Li, Y.; Jin, F. Blast resistance of metallic tube-core sandwich panels. Int. J. Impact Eng. 2016, 97, 10–28. [Google Scholar] [CrossRef]
- Emanuele, L.; Gupta, N.; Cappa, P.; Strbik, O.M.; Cho, K. Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich. J. Alloys Compd. 2017, 695, 2987–2994. [Google Scholar]
- Kovacik, J.; Marsavina, L.; Linul, L. Poisson’s ratio of closed-cell aluminium foams. Materials 2018, 11, 1904. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Turan, A.; Adel, N. Rotating metal foam structures for performance enhancement of double-pipe heat exchangers. Int. J. Heat Mass Transf. 2017, 105, 124–139. [Google Scholar]
- Gholamreza, A.B.; Chun, K.K. Experimental heat transfer and pressure drop in a metal-foam-filled tube heatexchanger. Exp. Therm. Fluid Sci. 2017, 82, 42–49. [Google Scholar]
- Jan, R.V.; Francesco, L.; Panayotis, D.; Dimos, P.E. Pore-scale modeling of cold-start emissions in foam-based catalytic reactors. Chem. Eng. Sci. 2015, 138, 446–456. [Google Scholar]
- Jan, R.V.; Francesco, L.; Narayanan, C.; Eggenschwiler, P.D.; Poulikakos, D. Multi-scale modeling of mass transfer limited heterogeneous reactions in open cell foams. Int. J. Heat Mass Transf. 2014, 75, 337–346. [Google Scholar]
- Francisco, G.M. Commercial applications of metal foams: Their properties and production. Materials 2016, 9, 85. [Google Scholar]
- Lefebvre, L.P.; Banhart, J.; Dunand, D.C. Porous metals and metallic foams: Status and recent developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.H.; Magee, C.L. The deformation of aluminum foams. Metal. Trans. A 1975, 6, 1253–1263. [Google Scholar] [CrossRef]
- Han, F.; Zhu, Z.; Gao, J. Compressive deformation and energy absorbing characteristic of foamed aluminum. Metall. Trans. A 1998, 29, 2497–2502. [Google Scholar] [CrossRef]
- Andrews, E.W.; Sanders, W.; Gibson, L.J. Compressive and tensile behavior of aluminum foams. Mater. Sci. Eng. A 1999, 270, 113–124. [Google Scholar] [CrossRef]
- Tan, P.J.; Reid, S.R.; Harrigan, J.J.; Zou, Z.; Li, S. Dynamic compressive strength properties of aluminum foams. Part I-Experimental data and observations. J. Mech. Phys. Solids 2005, 53, 2174–2205. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, G. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. Int. J. Impact Eng. 2007, 34, 1739–1752. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Guo, L. Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading. Int. J. Mech. Sci. 2012, 54, 48–56. [Google Scholar] [CrossRef]
- Pinto, P.; Peixinho, N.; Silva, F.; Soares, D. Compressive properties and energy absorption of aluminum foams with modified cellular geometry. J. Mater. Proc. Technol. 2014, 214, 571–577. [Google Scholar] [CrossRef]
- Karagiozova, D.; Shu, D.W.; Lu, G.; Xiang, X. On the energy absorption of tube reinforced foam materials under quasi-static and dynamic compression. Int. J. Mech. Sci. 2016, 105, 102–116. [Google Scholar] [CrossRef]
- Linul, E.; Marşavina, L.; Linul, P.A.; Kovacik, J. Cryogenic and high temperature compressive properties of Metal Foam Matrix Composites. Compos. Struct. 2019, 209, 490–498. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S. Investigation of mild steel thin-wall tubes in unfilled and foam-filled triangle, square, and hexagonal cross sections under compression load. J. Mater. Eng. Per. 2018, 27, 1936–1944. [Google Scholar] [CrossRef]
- EmanoilLinul, E.; Lell, D.; Movahedi, N.; Codrean, C.; Fiedler, T. Compressive properties of zinc syntactic foams at elevated temperatures. Compos. Part B Eng. 2019, 167, 122–134. [Google Scholar]
- Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S. Experimental fabrication and compression analysis characterization of LM30 Al alloy foam with 5 wt% SiCp at room temperature. Mater. Res. Exp. 2018, 5, 066526. [Google Scholar] [CrossRef]
- Peroni, M.; Peroni, L.; Avalle, M. High strain-rate compression test on metallic foam using a multiple pulse SHPB apparatus. J. Phys. IV 2006, 134, 609–616. [Google Scholar] [CrossRef]
- Paul, A.; Ramamurthy, U. Strain rate sensitivity of closed-cell aluminum foam. Mater. Sci. Eng. A 2000, 281, 1–7. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 2000, 24, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Rajak, D.; Kumaraswamidhas, L.; Das, S. Investigation and characterization of aluminium alloy foams with TiH2 as a foaming agent. Mater. Sci. Technol. 2016, 32, 1338–1345. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumaraswamidhas, L.; Das, S.; Kumaran, S.S. Characterization and analysis of compression load behaviour of aluminium alloy foam under the diverse strain rate. J. Alloys Compd. 2016, 656, 218–225. [Google Scholar] [CrossRef]
- Birla, S.; Mondal, D.P.; Das, S.; Kashyap, D.K.; Ch, V.A. Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam. Mater. Sci. Eng. A 2017, 685, 213–226. [Google Scholar] [CrossRef]
- Myers, K.; Katona, B.; Cortes, P.; Orbulov, I.N. Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression. Compos. Part A 2015, 79, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Zaiemekch, Z.; Liaghat, G.H.; Ahmadi, H.; Khan, M.K.; Razmkhah, O. Effect of strain rate on deformation behaviour of aluminum matrix composites with Al2O3 nanoparticles. Mater. Sci. Eng. A 2019, 753, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Rajak, D.K.; Mahajan, N.N.; Linul, E. Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. J. Alloys Compd. 2019, 775, 675–689. [Google Scholar] [CrossRef]
- Luong, D.D.; Gupta, N.; Daoud, A.; Rohatgi, P.K. High strain rate compressive characterization of aluminum alloy/ Fly ash cenosphere composites. Metal matrix syntactic foams. JOM 2011, 63, 53–56. [Google Scholar] [CrossRef]
- Kumaraswamidhas, L.A.; Rajak, D.K.; Das, S. An investigation on axial deformation behavior of thin-wall unfilled and filled tube with aluminum alloy (Al-Si7Mg) foam reinforced with SiC particles. J. Mater. Eng. Per. 2016, 25, 3430–3438. [Google Scholar] [CrossRef]
- Sahu, S.; Mondal, D.P.; Cho, J.U.; Goel, M.D.; Ansari, A.Z. Low-velocity impact characteristics of closed cell AA2014-SiCp composite foam. Compos. Part B 2019, 160, 394–401. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Nemeth, A. Infiltration characteristics of carbon fiber reinforced MMCs. Mater. Sci. Forum 2010, 659, 229–234. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Kientzl, I.; Blucher, J.T.; Nemeth, A.; Dobranszky, J.; Ginsztler, J. Production and investigation of a metal matrix composite pipe. In Proceedings of the 14th European Conference on Composite Materials, Budapest, Hungary, 7–10 June 2010. [Google Scholar]
- Chen, J.; Fang, H.; Liu, L.W.; Zhuang, Y.; Wang, J.; Han, J. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression. Compos. Part B 2018, 153, 295–305. [Google Scholar] [CrossRef]
- Peroni, L.; Scapin, M.; Avalle, M.; Weise, J.; Lehmhus, D.; Baumeister, J.; Busse, M. Syntactic iron foams-on deformation mechanisms and strain-rate dependence of compressive properties. Adv. Eng. Mater. 2012. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S. Technical overview of aluminum alloy foam. Rev. Adv. Mater. Sci. 2017, 48, 68–86. [Google Scholar]
- Ghariniyat, P.; Leung, S.N. Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Compos. Part B 2018, 143, 9–18. [Google Scholar] [CrossRef]
- Graphene: Material of the Future. Available online: https://www.cleverism.com/graphene-material-future/ (accessed on 4 October 2019).
- Jingyue, W.; Zhiqiang, L.; Genlian, F.; Huanhuan, P.; Zhixin, C.; Zhanga, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scrip. Mater. 2012, 66, 594–597. [Google Scholar]
- An, Y.; Yang, S.; Hongyan, W.; Zhao, E.; Zongshen, W. Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam. Mater. Des. 2017, 134, 44–53. [Google Scholar] [CrossRef]
- An, Y.; Yang, S.; Zhao, E.; Zongshen, W.; Hongyan, W. Fabrication of aluminum foam reinforced by graphene nanoflakes. Mater. Lett. 2018, 212, 4–7. [Google Scholar] [CrossRef]
- Gama, B.A.; Lopatnikov, S.L.; Gillespie, J.W.J. Hopkinson bar experimental technique: A critical review. Appl. Mech. Rev. 2004, 57, 223–250. [Google Scholar] [CrossRef]
- Aldoshan, A.; Mondal, D.P.; Khanna, S.K. High strain rate behavior of carbon nanotubes reinforced aluminum foams. ASME J. Eng. Mater. Tech. 2018, 140, 011011. [Google Scholar] [CrossRef]
- Kumar, R.B.; Kumar, S.; Das, S. Optimization of porosity of 7075 Al alloy 10% SiC composite produced by stir casting process through Taguchi method. Int. J. Mater. Eng. Innov. 2009, 1, 116–128. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 4th ed.; John-Wiley & Sons, Inc.: New York, NY, USA, 2006. [Google Scholar]
- ISO. Mechanical Testing of Metals-Ductility Testing-Compression Test for Porous and Cellular Metals; ISO 13314 (E): Geneva, Switzerland, 2011. [Google Scholar]
- Das, S.; Mondal, D.P.; Khanna, S. Graphene reinforced aluminium hybrid foam: Response to high strain rate deformation. J. Mater. Eng. Perf. 2019, 1, 1–9. [Google Scholar]
- Kenny, L.D. Mechanical properties of particle stabilized aluminum foam. J. Mater. Sci. Forum 1996, 217, 1883–1890. [Google Scholar] [CrossRef]
- Lankford, J.; Dannemann, K.A. Strain rate effects in porous materials. MRS Online Proc. Libr. Arch. 1998, 521, 103–108. [Google Scholar] [CrossRef]
- Dannemann, K.A.; Lankford, J.J. High strain rate compression of closed-cell aluminum foams. Mater. Sci. Eng. A 2000, 293, 157–164. [Google Scholar] [CrossRef]
- Duarte, I.; Ventura, E.; Olhero, S.; Ferreira, J.M.F. A novel approaches to prepare aluminium alloy foams reinforced by carbon nanotubes. Mater. Lett. 2015, 160, 162–166. [Google Scholar] [CrossRef]
- Kang, Y.A.; Zhang, J.Y.; TAN, J.C. Compressive behavior of aluminum foams at low and high strain rates. J. Cent. South Univ. Technol. 2007, 14, 301–305. [Google Scholar] [CrossRef]
- Yadav, B.N.; Verma, G.; Muchhala, D.; Kumar, R.; Mondal, D.P. Effect of MWCNTs addition on the wear and compressive deformation behavior of LM13-SiC-MWCNTs hybrid composites. Tribol. Int. 2018, 128, 21–33. [Google Scholar] [CrossRef]
- Kumar, A.P.; Aadithya, S.; Dhilepan, K.; Nikhil, N. Influence of nano-reinforced particles on thermomechanical properties of aluminium hybrid metal matrix composites fabricated by ultrasonically assisted stir casting. ARPN J. Eng. Appl. Sci. 2016, 11, 1204–1210. [Google Scholar]
- Elnasri, I.; Pattofatto, S.; Tsitsiris, E.; Zhao, H.; Hild, F.; Girard, Y. Shock Enhancement of cellular structures under impact loading: Part I Experiments. J. Mech. Phys. Solids 2007, 55, 2652–2671. [Google Scholar] [CrossRef] [Green Version]
RD | Pore Size (mm) | Strain Rate (s−1) | Mass (gm) | Yield Stress (MPa) | Plateau Stress (MPa) | Energy Absorption (MJm−3) |
---|---|---|---|---|---|---|
0.23 | 1 | 500 | 0.265 ± 0.13 | 8 ± 0.10 | 8.5 ± 0.11 | 0.8 ± 0.09 |
1 | 1000 | 0.269 ± 0.12 | 10 ± 0.11 | 12 ± 0.13 | 1.8 ± 0.19 | |
0.90 | 2300 | 0.267 ± 0.14 | 18 ± 0.21 | 20 ± 0.24 | 4.0 ± 0.20 | |
0.85 | 2750 | 0.270 ± 0.12 | 22 ± 0.23 | 22 ± 0.25 | 4.3 ± 0.23 | |
0.24 | 0.85 | 500 | 0.282 ± 0.13 | 10 ± 0.11 | 9.1 ± 0.12 | 1.65 ± 0.12 |
0.90 | 1300 | 0.280 ± 0.10 | 14 ± 0.16 | 13.2 ± 0.15 | 2.6 ± 0.13 | |
0.80 | 2500 | 0.277 ± 0.15 | 18 ± 0.20 | 21.5 ± 0.21 | 4.3 ± 0.22 | |
0.85 | 2760 | 0.279 ± 0.15 | 23 ± 0.25 | 25 ± 0.29 | 4.9 ± 0.26 | |
0.26 | 0.75 | 500 | 0.304 ± 0.14 | 11 ± 0.13 | 9.1 ± 0.11 | 1.90 ± 0.14 |
0.85 | 1000 | 0.305 ± 0.13 | 13 ± 0.15 | 12.5 ± 0.14 | 2.1 ± 0.22 | |
0.80 | 1500 | 0.307 ± 0.16 | 15 ± 0.17 | 15 ± 0.16 | 3.3 ± -0.28 | |
0.75 | 2500 | 0.309 ± 0.14 | 20 ± 0.22 | 22.6 ± 0.24 | 5.4 ± 0.29 | |
0.27 | 0.80 | 500 | 0.317 ± 0.13 | 12 ± 0.13 | 9.5 ± 0.11 | 1.8 ± 0.16 |
0.75 | 1300 | 0.313 ± 0.15 | 14 ± 0.16 | 13.8 ± 0.14 | 1.82 ± 0.17 | |
0.70 | 2300 | 0.317 ± 0.16 | 15 ± 0.19 | 22.1 ± 0.21 | 2.80 ± 0.21 | |
0.75 | 2600 | 0.315 ± 0.12 | 18 ± 0.20 | 20 ± 0.20 | 4.40 ± 0.25 | |
0.29 | 0.70 | 500 | 0.343 ± 0.13 | 10 ± 0.11 | 11 ± 0.13 | 2.7 ± 0.22 |
0.65 | 1000 | 0.340 ± 0.16 | 11 ± 0.13 | 13.5 ± 0.15 | 2.2 ± 0.24 | |
0.70 | 2200 | 0.339 ± 0.13 | 14 ± 0.16 | 19 ± 0.16 | 3.3 ± 0.26 | |
0.65 | 2760 | 0.341 ± 0.15 | 22 ± 0.23 | 25 ± 0.29 | 5.0 ± 0.28 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
RD | 4 | 89.13 | 4.69% | 42.36 | 10.589 | 1.02 | 0.493 |
Mass (gm) | 1 | 74.73 | 3.94% | 5.54 | 5.536 | 0.53 | 0.506 |
Strain rate (s−1) | 9 | 1690.80 | 89.05% | 1035.42 | 115.047 | 11.06 | 0.017 |
Pore size (mm) | 1 | 2.52 | 0.13% | 2.52 | 2.518 | 0.24 | 0.649 |
Error | 4 | 41.62 | 2.19% | 41.62 | 10.406 | ||
Total | 19 | 1898.79 | 100.00% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Rajak, D.K.; Khanna, S.; Mondal, D.P. Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate. Materials 2020, 13, 783. https://doi.org/10.3390/ma13030783
Das S, Rajak DK, Khanna S, Mondal DP. Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate. Materials. 2020; 13(3):783. https://doi.org/10.3390/ma13030783
Chicago/Turabian StyleDas, Sourav, Dipen Kumar Rajak, Sanjeev Khanna, and D. P. Mondal. 2020. "Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate" Materials 13, no. 3: 783. https://doi.org/10.3390/ma13030783
APA StyleDas, S., Rajak, D. K., Khanna, S., & Mondal, D. P. (2020). Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate. Materials, 13(3), 783. https://doi.org/10.3390/ma13030783