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Abstract: This paper deals with the mechanical behaviour, especially the permanent deformation and
resilient deformation of an unbound granular material (UGM) from Bréfauchet quarry which is used
as base layer material in low traffic pavements for full-scale tests at IFSTTAR in France. Medium-scale
repeated load triaxial tests (RLTT) are carried out at different water contents and the results show
that both permanent and resilient deformations increase with water content. Besides, two techniques
of fixing the sensors in materials with large particles for RLTTs are proposed and compared with
each other. The results suggest that the tube method is more suitable for the UGM for an accurate
measurement and a good adaptability is obtained during the RLTT. Based on the test results of UGM
Bréfauchet, the modelling work is performed with improved models used previously for a sandy
material. It appears that both the permanent and resilient behaviours of different unbound granular
materials can be well captured by the proposed equations considering the effects of water content and
anisotropy. This study is helpful to understand the evolution of permanent and resilient deformation
in different granular layers, especially for the base layer, in low traffic pavements. The verified models
can be used for other similar granular materials and this will lead to reducing the number of tests
required to predict the deformation behaviour of granular materials.

Keywords: unbound granular material; repeated load triaxial test; permanent/resilient deformation;
prediction model; water content

1. Introduction

Flexible road pavements consist in upper asphalt layers over one or more unbound granular
layers which are together compacted over a suitable soil subgrade. They represent approximately 60%
of the road network in France.

Unbound granular materials (UGM) are continuously graded granular materials, consisting in
general of crushed rock particles. They usually contain a certain amount of fines (typically 4% to
10%) and water and they are generally partially saturated. In flexible pavements, the response of
unbound granular materials gives rise in resilient and permanent deformations when subjected to
repeated loading. As it is well known, resilient deformations are related to the stiffness characteristics
of the material that should be sufficiently high in order to avoid the fatigue cracking of overlying
asphalt layers. On the other hand, the gradual accumulation of permanent deformations, although
they are very small during each loading cycle, could lead to large ruts at the top of the structure
due to excessive rutting [1–3]. As a result, well understanding of the UGM mechanical behaviour
(especially the permanent and resilient deformation behaviour) is very helpful for the pavement design
and maintenance.
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In recent years, the effect of moisture content on deformation behaviour, which was equally
important, has been studied by many researchers [4–13]. These researches showed that the permanent
or resilient deformations increased with water content and different prediction models were proposed
to evaluate the deformation behaviour of unbound granular materials. Especially, based on a long-term
research on a subgrade material—Missillac sand (Missillac sand is an alluvium sand coming from the
quarry of Missillac in France), authors [4] suggested two approaches (water content and fine content
method/suction method) to predict the permanent deformation with different water contents and
different fine contents. For the resilient behaviour, an improved Boyce–Hornych model [5] has shown
that it has a good adaption to the changing anisotropy caused by the various water contents or fine
contents under repeated loading. However, these findings were obtained just based on only one
granular material—Missillac sand and the further verification with other materials for the general
equations was greatly required.

As a result, in present study, a new material, UGM Bréfauchet, which is used as base layer material
in low traffic pavements for full-scale tests at IFSTTAR in France, will be tested with repeated load
triaxial tests (RLTT) at various water contents to describe accurately the permanent and resilient
deformation behaviour. Then, based on the test results, the models or equations suggested for Missillac
sand could be extended or checked.

Besides, the large UGM particles bring difficulties to fix the Hall-Effect strain measurement sensors,
which is an accurate measurement method, on the triaxial sample. As a result, the actuator LVDT,
external LVDT or internal LVDT are often applied in RLTTs to replace the Hall effect sensors [14,15].
However, Zhalehjoo et al., [16] showed significantly different Mr values with actuator LVDT, external
LVDT, internal LVDT and Hall effect sensors based on a comprehensive comparative study. As a
consequence, in this study, two technics for fixing the Hall effect sensors in the UGM for RLTTs will be
proposed and compared with each other.

The objective of this work is to verify the evolution mechanism of permanent and resilient
deformation (based on a subgrade sand) with a coarser UGM. Once the relationships can be reproduced,
the results will be very meaningful to understand the evolution of UGM deformation in different layers
in low traffic pavements. Finally, the findings will be helpful to reduce the number of tests required
and to provide the parameters for pavement design.

2. Materials Studied

The studied UGM Bréfauchet is a crushed gneiss aggregate from the site of Bréfauchet, near
Nantes, France, as shown in Figure 1a. This material is used as a base layer material in low traffic
pavements for full-scale pavement tests (Figure 1b) at IFSTTAR (Institut Français des Sciences et
Technologies des Transports, de l’Aménagement et des Réseaux) in Nantes, France. The particle size of
the UGM varies between 0 and 28 mm and the grain size distribution curve is presented in Figure 2.
To fit the experimental devices, before the tests, the grains larger than 20 mm are removed.
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The modified Proctor test is completed with the automatic method [17]: the UGM is compacted
in five layers in a CBR mold and the water content ranges from 3.8% to 7.8%. Figure 3 presents the
modified Proctor compaction curve for UGM Bréfauchet. The optimum water content (OMC = 6.1%)
and the maximum dry density (MDD = 2.218 Mg/m3) can be obtained based on the result.
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In order to study the influence of water content on the mechanical behaviour of UGM Bréfauchet,
the water content of triaxial test sample preparation is varied from 3% to 6% with a dry density of
2.13 Mg/m3 (96% of maximum dry density).

As some researches mentioned above, the effect of water content is related to the suction in
unsaturated soil. In fact, the suction corresponds to not only the moisture state but also to the
microstructure of aggregates which can affect significantly the deformation. As a result, the SWRC of
UGM Bréfauchet (wetting path) is investigated with the filter paper method [18]. The soil samples
are compacted in two layers with a thickness of 3 cm per layer in a CBR mold and the Whatman no.
42 filter paper is placed between the two layers to measure the suction values of soil samples. The
equipment and samples of suction measurement for UGM Bréfauchet are presented in Figure 4.
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Figure 4. Filter paper method to measure matric suction.

Figure 5 shows the variation of matric suction with water content in wetting path for UGM
Bréfauchet. It can be stated that the matric suction is relatively low in UGM base layer (less than 100
kPa). The result is also compared with the suction for another UGM—Maraîchère in drying path [19].
The higher suction values for UGM Bréfauchet should be caused by a higher density prepared and a
higher clay content for this material.
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Besides, the van Genuchten model [20] is used to fit the measured data. The van Genuchten
equation is expressed as

w = wr +
(ws −wr)[

1 + (αs)n
]m , (1)

where w is the actual soil water content at the suction s (kPa); ws (%) and wr (%) are the saturated water
content and the residual water content; α is a parameter related to the air entry suction; m and n are the
model parameters with the relationship: m = 1 − 1/n. Figure 5 also shows the model estimation which
indicates that the van Genuchten model fits well with the measured values. The model parameters are
summarized in Table 1.

Table 1. Parameters of van Genuchten model.

UGM Bréfauchet
Wetting path

Parameters of
VG model

α n m ws (%) wr(%)

0.199 1.932 0.482 5.4 2.9

It should be mentioned that, due to the time consuming and the limitation of device, two samples
are tested for each studied water content. Finally, the test results of eight samples (lost two) from
2.2% to 5.2% are shown in Figure 5. This method has been calibrated with tensiometer method in the
previous study [21].
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3. Repeated Load Triaxial Test (RLTT)

RLTT is a common test to investigate the mechanical behaviour of granular materials. In the
present study, it is used to simulate the in situ pavement conditions under cyclic loadings to describe
the resilient deformation or permanent deformation of UGM at different initial hydraulic states.

3.1. Sample Preparation and Test Equipment

All the UGM Bréfauchet specimens are prepared, in the same way, before being subjected to
triaxial tests. Specimens are prepared firstly by oven-drying for 24 h, then cool down aggregates
are mixed with water using a large mixer to reach the target water contents. The wet materials are
then stored in a well-sealed plastic bag for at least 24 h for moisture homogenization. Compaction is
performed using a vibrating hammer following the French standard [22] in 7 layers for each specimen.
All the tested specimens are prepared at a dry density of 2.13 Mg/m3 (96% of Maximum dry density).
This is the maximum dry density which can be reached with this compaction method.

To test the UGM Bréfauchet with the largest particles whose diameter can reach 20 mm, a
medium-scale triaxial device (Wykeham, Farrance), as shown in Figure 6 is used allowing testing
specimens of 150 mm in diameter and 300 mm in height.Materials 2020, 13, x FOR PEER REVIEW 6 of 22 
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During a triaxial test, an axial stress (σ1) and a confining pressure (σ3) are applied on the specimen
in the triaxial cell, simulating the loading state under pavement to measure the vertical strain (σ1) and
the radial strain (σ3). Both the axial stress and the confining pressure are supplied by the pneumatic
servo loading system.

The principal measurement system is a composite of stress/pressure transducers and displacement
transducers. The typical transducers used in this study are:

• An axial force transducer;
• A cell pressure transducer;
• An external LVDT;
• Two inner Hall effect transducers (axial);
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• An inner Hall effect transducer (radial).

As mentioned above, the axial deformation (ε1) and radial deformation (ε3) will be measured by
the Hall effect transducers.

3.2. Monotonic Triaxial Test

To determine the shear strength parameters of the UGM Bréfauchet (friction angle and cohesion),
monotonic undrained triaxial tests are firstly performed at water content of w = 4.4% and under
different confining pressures/cell pressure σ3 (0 kPa, 7 kPa, 22kPa, 45 kPa). The shear test is controlled
with a speed of 0.1%/min and terminated with 5% axial strain.

Figure 7a presents the results of monotonic triaxial test. On the whole, with higher σ3, the peak
deviator stress is more significant, as expected. The friction angle is 54.6◦ and the cohesion is 72.9 kPa.
The rupture line, as shown in Figure 7b, will be helpful to determine the applied stress path and stress
level in the following RLTTs.

p =
σ1 + 2σ3

3
, (2)

and
q = σ1 − σ3, (3)

where, σ1 and σ3 are the major and minor principal stresses.
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The mean normal stress p and deviator stress q are defined by.

3.3. Two Methods for Fixing Displacement Transducers

In this study, the large particles (the diameter of grains can reach or be larger than 20 mm) bring
difficulties to fix the three displacement transducers on the UGM sample and to have an accurate
measurement and deform consistently with the sample, comparing with the sand samples [23].

To solve this problem, authors developed two sets of fixing devices for the displacement transducers
to fit the larger particles.

For the first method (as shown in Figure 8), the pre-embedded metal bases and screws are used to
fix the vertical displacement transducers. The radial displacement transducer is fixed by silica gel. This
method can show basically implementation of strain measurement during repeated loading triaxial
test. However, the thickness of 2 mm of the metal base is unfriendly for installation and it is difficult to
follow the large deformation case. The contactless fixing of radial displacement transducer always
generates an exorbitant radial strain in resilient test phase with a variable confining pressure. Besides,
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in order to prevent the intrusion of water from screw holes, silica glue is used carefully which is really
hard to operate and fails often.
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As a consequence, another method is developed with tubes (as shown in Figure 9): the tubes,
about 5 cm, are filled with silica gel and pre-embedded into specimen (about 2.5 cm) from the drilled
hole on the compaction mold during the compaction. After compaction, the protrusion part of each
tube is cut and removed before the de-molding. Then, the vertical and radial displacement transducers
can be well fixed by the needles inserted into tube bases.
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3.4. Test Procedures

Figure 10 presents the principle of RLTT: under the repeated loading (q & σ3), the increase of
deformation (axial/radial) can be divided into two parts in each cycle. The unrecoverable part is
called permanent/plastic deformation, which accumulates gradually as number of cycles increasing.
Another recoverable part is called reversible deformation. After adequate cycles, the increase of the
unrecoverable part is quiet small. It means that the accumulated permanent deformation tends to
stabilization and then the recoverable part can be treated as resilient deformation.
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As a result, to study this complex cyclic behaviour of UGM Bréfauchet (permanent and resilient
behaviour), a conditioning phase under CCP (constant confining pressure) loading to stabilize the
accumulation of permanent strains and a following resilient test phase under VCP (variable confining
pressure) loading to investigate the non-linear elastic behaviour are applied on a specimen.

• For the conditioning phase, the cyclic stress path of ∆q/∆p = 3 (∆p = 166.67 kPa, ∆q = 500 kPa) from
an initial stress state (p0 = 70 kPa, q0 = 0 kPa) is applied at a frequency of f = 0.5 Hz. The number
of cycles is chosen as N = 20,000 cycles. When the permanent deformation rate ∆ε1

p/∆N is lower
than 1 × 10−7, we can state that the permanent deformation achieves the equilibrium state [24].

• For the following resilient phase, five stress paths (∆q/∆p = 0; 1; 1.5; 2; 2.5) are applied on the same
sample in sequence from an initial stress state (p0 = 20 kPa, q0 = 0 kPa). Each stress path contains
100 loading and unloading cycles, with a frequency of f = 0.05 Hz.

Figure 11 and Table 2 summarize the stress paths used in conditioning phase and resilient
test phase.
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Table 2. Stress paths used in conditioning phase and resilient test phase.

Materials ∆q/∆p ∆p (kPa) ∆q (kPa) Confining
Pressure (kPa)

UGM
Bréfauchet

3(Conditioning) 166.67 500 70–CCP
0 250 0 270–VCP
1 400 400 286.67–VCP

1.5 400 600 220–VCP
2 300 600 120–VCP

2.5 90 225 35–VCP

4. Results and Discussions

4.1. Permanent Deformation

The results of conditioning phase are used to determine the permanent deformation behaviour. It
can be stated that the permanent axial deformation ε1

p increases with an increase of the number of
cycles at different water contents as illustrated in Figure 12a. On the whole, the higher the water content,
the larger the permanent axial deformation. For most water contents, the permanent axial strain
increases quickly during the first several cycles and then tends to be constant with a low increment for
each loading cycle. In particular, at water content of w = 5.6%, the sample is rapidly destroyed under
the repeated loading. The evolution of permanent axial deformation rate versus the accumulated
permanent axial deformation at various water contents is also presented in Figure 12b. It can be
stated that the permanent axial deformation rate decreases rapidly with an increase of permanent axial
deformation when the water content is lower than 4.3%. Finally, the permanent axial deformation
rates (∆ε1

p/∆N) at the end of each test are less than or close to 10−7/cycle, except at water content of
5.6%. As a result, we can state that the permanent axial deformation has achieved the equilibrium state
after 20,000 cycles and the following resilient phase can be applied on the samples.

For permanent radial deformation, the results show that the ε3
p also increases with the number of

cycles at different water contents as shown in Figure 12c. The effect of water content on the permanent
radial deformation is the same as permanent axial deformation: generally, the higher the water content,
the larger the permanent radial deformation. Based on the value of ∆ε3

p/∆N at the end of each test, it
can be also stated that the permanent radial deformation at end of each test achieves the equilibrium
state after 20,000 cycles.

Besides, based on the results of T1-w = 4.6%-screw and T8-w = 4.6%-tube, it can be also stated
that the effect of different methods of fixing displacement transducers on the permanent deformation
behaviour: for the permanent axial deformation, tube method has 20 × 10−4 deformation larger than
screw method; for the permanent radial deformation, these two methods accord with each other, which
can be explained with the constant confining pressure (CCP) in conditioning phase: the radial sensor is
always pressured on the sample by the constant confining pressure for both methods, the difference of
radial deformation between both methods cannot be observed.
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4.2. Resilient Deformation

In this study, the resilient deformation behaviour is described by the resilient volumetric
deformation (εv

r) and the resilient deviatoric deformation (εq
r) defined as

εr
v = εr

1 + 2εr
3 (4)

εr
q =

2
(
εr

1 − ε
r
3

)
3

(5)

where, ε1
r is the resilient axial deformation and ε3

r is the resilient radial deformation.
The results of resilient test phase are presented in Figures 13–16.
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First of all, the comparison of resilient volumetric and deviatoric deformation between two fixing
methods are introduced in Figures 13 and 14 respectively, based on the results of T1-w = 4.6%-screw
and T8-w = 4.6%-tube. It can be stated that, for the resilient volumetric deformation, the screw method
has a larger value than the tube method and the unsmooth curves with large open loops suggest the
poorly accurate measurement with the screw method. The same phenomenon can be observed for
resilient deviatoric deformation.

The results can be explained with the inaccurate measurement of ε3, which is the most likely to be
affected by the variable confining pressure. Besides, the influence of deformation development on
axial deformation measurement is not presented clearly with the present results which have no large
deformation. Normally, only 2 mm thickness for screw bases leads to a sharp increase of deformation
or sensors failure when a large deformation and an incline of screw base occur. Consequently, the
method with tubes is suggested to apply mainly in this study and in the future based on the accurate
measurement and good adaptability during the RLTT.

Figures 15 and 16 show the resilient volumetric deformation εv
r and the resilient deviatoric

deformation εq
r, respectively, that are obtained for different stress paths (∆q/∆p = 0; 1; 1.5; 2; 2.5) at

different water contents (w = 3.5%, 4.2%, 4.3% and 4.6%, as examples, with tube method). Based on the
results, following observations can be stated:

• The cycles show that the behaviour of the UGM is nonlinear, and depends on the mean stress p
and the stress ratio ∆q/∆p. It can be stated that εq

r increases while εv
r decreases with the ratio

∆q/∆p increases.
• The effect of water content on resilient deformations is observed: εv

r and εq
r increase with the

water content and present the largest values at the water content (4.6%) in all stress paths nearly.
• The very slight hysteresis for the cycles suggests that the behaviour is close to pure elasticity and

the measurements with tube method is more accurate enough compared to that with the metallic
inserts/screws.

After tests, all the specimens are cut into seven equal pieces to measure the water content and the
water distribution. As shown in Figure 17, the results present the water contents for different pieces in
different samples after testing phases. It can be also stated that all the samples have a homogeneous
water content distribution and both tube and screw methods with a water proof silicone well spread,
can prevent the intrusion of water effectively.
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5. Modelling of Permanent and Resilient Behaviour

In this section, the proposed/modified models for permanent behaviour [4] and resilient
behaviour [5] based on the researches for Missillac sand will be verified with the test results (RLTT and
SWRC) of UGM Bréfauchet as follows.

5.1. Determination of Permanent Axial Deformation with Water Content and Suction

As mentioned above, the prediction models of permanent axial deformation proposed in previous
research [4] are available to capture the evolution of permanent behaviour taking into account the
number of cycles, the stress level, the water content, and the fine content of the granular material. Two
approaches are used: one is based on the water contents and fine contents and the other is based on
suction values and both approaches show good capacities. In this study, the fine content and stress
level are not considered. As a result, the models used for UGM Bréfauchet are rewritten as:

Based on water content:

ε
p
1 = a · (w/v)o

·

(
1− (N/N0)

(v′/w)
)
, (6)

where, ε1
p is permanent axial deformation; w is water content; N is number of cycles; N0 is number of

cycles before the first measurement; a, v, o and v’ are parameters.
Based on suction:

ε
p
1 = b · (S/S∗)d

·

(
1− (N/N0)

e·ln (S/Sa)+ f
)
, (7)

where, S is suction value; S* is suction value corresponding to the intersection point of wetting and
drying paths; b, d, e, and f are parameters; Sa is equal to 100 kPa. In this study, the S* is estimated in a
range from 1.5 kPa to 3.5 kPa for the lack of drying path data.

Figures 18 and 19 show the modelling prediction compared with test results with water content
based model and suction based model respectively. The parameters of the models are presented in
Tables 3 and 4. Based on the results, it can be stated that the proposed models for the Missillac sand, a
granular material, used for the subgrade layer, give satisfactory results for the UGM Bréfauchet used
for the base layer with coarser particles.
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Figure 19. Test results, as well as the model prediction, for ε1
p based on suction (S* = 2.5 kPa).

Table 3. Parameters of the model based on water content.

UGM
Bréfauchet

a v o v′ R2

69.644 1.277 6.246 −0.0003 0.937

Table 4. Parameters of the model based on suction.

UGM
Bréfauchet

S*(kPa) b d e f R2

1.5 351.627 −0.733 −1.393 −9.642 0.891
2.5 267.284 −0.800 −0.464 −3.218 0.896
3.5 219.425 −0.867 −0.677 −4.687 0.898

Besides, it is obvious that the water content based model can describe the permanent deformation
behaviour and its evolution more accurately than suction based model. The phenomenon can be
explained as follows, for the granular materials, the matric suction value and the influence of suction
on mechanical behaviour decrease with the increase of coarse particles. In this study, the suction of
UGM Bréfauchet is less than 70 kPa with a reasonable water content range, which is far less than the
maximum applied loads during the RLTT. Besides, as we mentioned in the former study for Missillac
sand [4,13], the suction corresponds not only to the saturation state but also to the fine content and
further the microstructure in aggregates, which influences significantly the deformation behaviour of
granular materials under repeated loads. However, for UGM Bréfauchet, the mechanical behaviour is
affected gradually by the coarse particle structures which cannot be evaluated by suction.

It can be concluded that the models proposed for granular materials have a good capacity to
capture the general trend of the evolution of the permanent deformation with the number of cycles.
The modelling accuracy is decreasing gradually with increasing particle size with suction based model.

5.2. Determination of Resilient Deformation with Modified Boyce Model

Boyce (1980) [25] proposed an isotropic non-linear model for predicting the resilient deformation
behaviour of granular materials. Then, Hornych and co-workers [26] introduced the anisotropic
response of granular materials into Boyce model through multiplying the axial stress by an anisotropy
coefficient γ1. The modified model was expressed as

εr
v =

p∗n

pan−1

γ1 + 2
3Ka

+
n− 1
18Ga

(γ1 + 2) ·
(

q∗

p∗

)2

+
γ1 − 1
3Ga

·
q∗

p∗

, (8)
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εr
q =

2
3
·

p∗n

pan−1

γ1 − 1
3Ka

+
n− 1
18Ga

(γ1 − 1).
(

q∗

p∗

)2

+
2 · γ1 + 1

6Ga
·

q∗

p∗

, (9)

p∗ =
γ1σ1 + 2σ3

3
, (10)

q∗ = γ1σ1 − σ3, 0 < γ1 < 1, (11)

where, Ka, Ga, and n are parameters; γ1 is the axial anisotropy coefficient, γ1 = |ε1/ε3|; pa is 100 kPa.
Based on the results of Missillac sand, the radial anisotropy coefficient γ3 was suggested by

authors [5] to replace the axial anisotropy coefficient γ1 to fit the changing anisotropy behaviour of
granular materials under the repeated loading. The improved model was expressed as

εr
v =

p∗n

pan−1

1 + 2γ3

3Ka
+

n− 1
18Ga

(1 + 2γ3).
(

q∗

p∗

)2

+
1− γ3

3Ga
·

q∗

p∗

, (12)

εr
q =

2
3
·

p∗n

pan−1

1− γ3

3Ka
+

n− 1
18Ga

(1− γ3) ·

(
q∗

p∗

)2

+
2 + γ3

6Ga
·

q∗

p∗

, (13)

p∗ =
σ1 + 2γ3σ3

3
, (14)

q∗ = σ1 − γ3σ3, γ3 > 1, (15)

where, γ3 is the radial anisotropy coefficient, γ3 = |ε3/ε1|.
In this section, based on the resilient test results of UGM Bréfauchet as shown in Figures 15 and 16,

the modelling results of these two sets of equations will be compared to check the model improvement
with radial anisotropy coefficient γ3.

The parameter optimization of Equations (8)–(11) for UGM Bréfauchet with γ1 is presented in
Table 5 and the parameter optimization of Equations (12)–(15) for UGM Bréfauchet with γ3 is presented
in Table 6. Based on the result of T5-w = 4.2%, T7-w = 4.3%, and T8-w = 4.6%, it can be stated that
both sets of equations have good correlation coefficients for the resilient behaviour and the Equations
(12)–(15) show a more accurate modelling result. The curves of T6-w = 3.5%, in different stress paths,
are close together as shown in Figures 15a and 16a. As a result, the optimized parameters with both
sets of equations are very poor and cannot be used for the comparison in this section. Besides, Figure 20
shows the relationships between γ1 and 1/γ3. It can be confirmed that the reciprocal relationship
between γ1 and γ3 for UGM can change under a repeated loading as observed for Missillac sand [5].
In conclusion, the resilient test results of UGM Bréfauchet can verify the improved Boyce–Hornych
model (Equations (12)–(15)) which is accurate and general for the unbound granular materials.

Table 5. Parameter optimization of Equations (8)–(11) for UGM Bréfauchet with γ1.

w (%) ∆q/∆p Parameters (UGM Bréfauchet)
Ccorrel

Ka Ga n γ1

3.5 0; 1; 1.5; 2; 2.5 152.63 118.54 0.02 29.07 0.636
4.2 0; 1; 1.5; 2; 2.5 16.77 38.47 0.27 0.80 0.799
4.3 0; 1; 1.5; 2; 2.5 14.15 32.06 0.33 0.64 0.835
4.6 0; 1; 1.5; 2; 2.5 9.04 23.42 0.20 0.56 0.827

Average values 48.15 53.12 0.21 7.77 /
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Table 6. Parameter optimization of Equations (12)–(15) for UGM Bréfauchet with γ3.

w (%) ∆q/∆p Parameters (UGM Bréfauchet)
Ccorrel

Ka Ga n γ3

3.5 0; 1; 1.5; 2; 2.5 87.02 70.90 0.45 0.20 0.573
4.2 0; 1; 1.5; 2; 2.5 23.55 54.18 0.29 1.43 0.821
4.3 0; 1; 1.5; 2; 2.5 25.80 65.39 0.33 1.96 0.853
4.6 0; 1; 1.5; 2; 2.5 18.62 55.91 0.22 2.18 0.865

Average values 38.75 61.60 0.32 1.44 /Materials 2020, 13, x FOR PEER REVIEW 18 of 22 
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Figures 21 and 22 show the modelling of εv
r and εq

r values for UGM Bréfauchet at different water
contents based on Equations (12)–(15). As described by correlation coefficients above, the very good
estimated results (both εv

r and εq
r) can be obtained.
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6. Conclusions

Granular layers play an important role in the overall performance of the structure, especially
for the bearing capacity. In the previous studies, the performance of subgrade granular material—
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Missillac sand has been well analyzed and a series of prediction models was proposed or modified to
describe the permanent and resilient behaviour at different water contents and different fine contents.
In the present work, a much coarser UGM Bréfauchet, which is used as base layer material in low
traffic pavements for full-scale pavement tests, has been studied to check the evolution mechanism.
Based on the investigation of these two granular materials, it can be concluded that:

- Both approaches based on water content/suction have a good capacity to describe the permanent
deformation behaviour of UGM at different water contents. However, the modelling accuracy is
decreasing gradually with increasing particle size with suction-based model.

- For the resilient behaviour of UGM, the improved Boyce–Hornych model has a good ability to
capture the changing anisotropy caused by the various water contents or fine contents under
repeated loading.

- The two methods of fixing the sensors on the materials with large particles for RLTTs are proposed
and compared with each other. The results suggest that the tube method is more suitable for the
large particle UGM as the accurate measurement and good adaptability during the RLTT.

Consequently, this study is helpful to understand the evolution of permanent and resilient
deformation of a wide range of different granular materials. The models can be used for other similar
granular materials directly and reduce the number of tests required to predict the deformation behaviour.

It should be also mentioned that, due to the time consuming and the complexity of the operation,
the number of the test in this study is not so abundant. As a result, for the future work, plenty of
repetition tests will be continued for further verification and statistical analysis. Besides, further
numerical modelling will be also conducted.
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