Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis of the M. oleifera Leaves Extract
2.2. Characterization
2.2.1. Size and Morphology of the Synthesized Bismuth Nanoparticles
2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR) of the M. oleifera Leaves Extract and the Synthesized Bismuth Nanoparticles
2.2.3. UV-Vis Spectroscopy of the M. oleifera Leaves Extract and the Synthesized Bismuth Nanoparticles
2.3. Antioxidant Activity of the M. oleifera Leaves Extract and the Synthesized Bismuth Nanoparticles
2.4. Anti-Bacterial Activity of the M. oleifera Leaves Extract and the Synthesized Bismuth Nanoparticles
2.5. Anti-Fungal Activity of the M. oleifera Leaves Extract and the Synthesized Bismuth Nanoparticles
3. Materials and Methods
3.1. Preparation of the M. oleifera Leaves Extract
3.2. Synthesis of the Bismuth Nanoparticles
3.3. Characterization of the Size and Morphology of the Synthesized Bismuth Nanoparticles
3.4. Phytochemical Analysis of the M. oleifera Leaves Extract
3.5. Antioxidant Activity
3.5.1. DPPH Assay (Antioxidant Activity Percentage—AA%)
3.5.2. Phosphomolybdenum Assay (Total Antioxidant Capacity–TAC)
3.6. Anti-Bacterial Activity using Resazurin Microtiter Assay
3.7. Anti-Fungal Activity Using Resazurin Microtiter Assay
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rathi, B.S.; Bodhankar, S.L.; Baheti, A.M. Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian J. Exp. Biol. 2006, 44, 898–901. [Google Scholar] [PubMed]
- Ogbe, A.O.; Affiku, J.P. Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: Potential benefits in poultry nutrition and health. JMBFS 2011, 1, 296–308. [Google Scholar]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwantong, O.; Pankongadisak, P.; Deachathai, S.; Supaphol, P. Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings. Polym. Bull. 2014, 71, 925–949. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Rahpaima, G.; Mohseni, M. Synthesis, characterization, metal sorption, and biological activities of organosoluble and thermally stable azoxanthone-based polyester. Polym. Adv. Technol. 2015, 26, 234–244. [Google Scholar] [CrossRef]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kwon, D.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- Dogra, N.; Choudhary, R.; Kohli, P.; Haddock, J.D.; Makwana, S.; Horev, B.; Vinokur, Y.; Droby, S.; Rodov, V. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces. J. Agric. Food Chem. 2015, 63, 2557–2565. [Google Scholar] [CrossRef]
- Ravichandran, M.; Hettiarachchy, N.S.; Ganesh, V.; Ricke, S.C.; Singh, S. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Saf. 2011, 31, 462–471. [Google Scholar] [CrossRef]
- Horev, B.; Sela, S.; Vinokur, Y.; Gorbatsevich, E.; Pinto, R.; Rodov, V. The effects of active and passive modified atmosphere packaging on the survival of Salmonella enterica serotype Typhimurium on washed romaine lettuce leaves. Food Res. Int. 2012, 45, 1129–1132. [Google Scholar] [CrossRef]
- Fadida, T.; Kroupitski, Y.; Peiper, U.M.; Bendikov, T.; Sela, S.; Poverenov, E. Air-ozonolysis to generate contact active antimicrobial surfaces: Activation of polyethylene and polystyrene followed by covalent graft of quaternary ammonium salts. Colloids Surf. B Biointerfaces 2014, 122, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Meridor, D.; Gedanken, A. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. Ultrason. Sonochem. 2013, 20, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [Green Version]
- Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E.; et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076. [Google Scholar] [CrossRef]
- Borase, H.P.; Salunke, B.K.; Salunkhe, R.B.; Patil, C.D.; Hallsworth, J.E.; Kim, B.S.; Patil, S.V. Plant extract: A promising bio-matrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 2014, 17, 1–29. [Google Scholar] [CrossRef]
- Park, Y. A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. J. Korean Soc. Toxicol. Res. 2014, 30, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Madhavaraj, L.; Sethumadhavan, V.V.; Geun, H.G.; Mathur, N.K.; Si, W.K. Synthesis, characterization and evaluation of antimicrobial efficacy of silver nanoparticles using Paederia foetida leaf extract. Int. Res. J. Biol. Sci. 2013, 15, 76–80. [Google Scholar]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef]
- Parveen, A.; Roy, A.S.; Rao, S. Biosynthesis and characterization of silver nanoparticles from Cassia auriculata leaf extract and in vitro evaluation of antimicrobial activity. Int. J. Appl. Biol. Pharm. Technol. 2012, 3, 222–228. [Google Scholar]
- Dubey, S.P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B Biointerfaces 2010, 80, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Gavhane, A.J.; Padmanabhan, P.; Kamble, S.P.; Jangle, S.N. Synthesis of silver nanoparticles using the extracts of neem leaf and triphala and the evaluation of their antimicrobial activities. Int. J. Pharm. Biol. Sci. 2012, 3, 88–100. [Google Scholar]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Biswas, K.; Tamang, A.; Bandyopadhyay, J.; De, D. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016, 10, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Mariselvam, R.; Ranjitsingh, A.J.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Balashanmugam, P.; Caral Dinesh, R.; Manivasagan, V.; Ramesh Babu, N.G.; Kalaichelvan, P.T. Extracellular biosynthesis of silver nanoparticles using Cassia fistula extract and in vitro antimicrobial studies. J. Pharm. Res. 2014, 8, 187–191. [Google Scholar]
- Majeed, A.; Ullah, W.; Anwar, A.W.; Shuaib, A.; Ilyas, U.; Khalid, P. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: A review. Mater. Technol. 2016, 33, 313–320. [Google Scholar] [CrossRef]
- El-khadragy, M.; Alolayan, E.M.; Metwally, D.M.; Serag El-Din, M.F.; Alobud, S.S.; Alsultan, N.I.; Alsaif, S.S.; Awad, M.A.; Abdel Moneim, A.E. Clinical efficacy associated with enhanced antioxidant enzyme activities of silver nanoparticles biosynthesized using Moringa oleifera leaf extract, against cutaneous leishmaniasis in a murine model of Leishmania major. Int. J. Environ. Res. Public Health 2018, 15, 1037. [Google Scholar] [CrossRef] [Green Version]
- Torrisi, L.; Silipigni, L.; Restuccia, N.; Cuzzocrea, S.; Cutroneo, M.; Barreca, F.; Fazio, B.; Di Marco, G.; Guglielmino, S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids 2018, 119, 62–70. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Dang, H. A simple way to prepare bismuth nanoparticles. Mater. Lett. 2004, 58, 790–793. [Google Scholar] [CrossRef]
- Pothula, K.; Tang, L.; Zha, Z.; Wang, Z. Bismuth nanoparticles: An efficient catalyst for reductive coupling of nitroarenes to azo-compounds. RSC Adv. 2015, 5, 83144–83148. [Google Scholar] [CrossRef]
- Rieznichenko, L.S.; Gruzina, T.G.; Dypkova, S.M.; Ushkalov, V.O.; Ulberg, Z.R. Investigation of bismuth nanoparticles antimicrobial activity against high pathogen microorganism. Am. J. Bioterror. Biosecur. Biodef. 2015, 2, 1004. [Google Scholar]
- Xia, F.; Xu, X.; Li, X.; Zhang, L.; Zhang, L.; Qiu, H.; Wang, W.; Liu, Y.; Gao, J. Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-nitrophenol. Ind. Eng. Chem. Res. 2014, 53, 10576–10582. [Google Scholar] [CrossRef]
- Liang, Y.; Manioudakis, J.; Macairan, J.R.; Askari, M.S.; Forgione, P.; Naccache, R. Facile aqueous-phase synthesis of an ultrasmall bismuth nanocatalyst for the reduction of 4-nitrophenol. ACS Omega 2019, 4, 14955–14961. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruiz, V.-F.; Zumeta-Dubé, I.; Díaz, D.; Arellano-Jiménez, M.J.; José-Yacamán, M. Can silver be alloyed with bismuth on nanoscale? An optical and structural approach. J. Phys. Chem. C 2017, 121, 940–949. [Google Scholar] [CrossRef]
- Manasa, M.G.; Bhakta, A.K.; Mekhalif, Z.; Mascarenhas, R.J. Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; an electrochemical sensor for sensitive determination of gallic acid at neutral pH. Mater. Sci. Energy Technol. 2020, 3, 174–182. [Google Scholar]
- Reverberi, A.P.; Varbanov, P.S.; Lauciello, S.; Salerno, M.; Fabiano, B. An eco-friendly process for zerovalent bismuth nanoparticles synthesis. J. Clean. Prod. 2018, 198, 37–45. [Google Scholar] [CrossRef]
- Gomez, C.; Hallot, G.; Port, M. Inorganic Frameworks as Smart Nanomedicines, Chapter 10 Bismuth Metallic Nanoparticles; Grumezescu, A.N., Andrew, W., Eds.; Applied Science Publishers: London, UK, 2018; pp. 449–487. [Google Scholar]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringaoleifera Lam leaves. Ind. Crop Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J. Chromatogr. Sci. 2013, 52, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Gozdziewska, M.; Cichowicz, G.; Markowska, K.; Zawadac, K.; Megiel, E. Nitroxide-coated silver nanoparticles: Synthesis, surface physicochemistry and antibacterial activity. RSC Adv. 2015, 5, 58403–58415. [Google Scholar] [CrossRef]
- Megiel, E. Surface modification using TEMPO and its derivatives. Adv. Colloid Interface Sci. 2017, 250, 158–184. [Google Scholar] [CrossRef]
- Kaim, A.; Szydłowska, J.; Piotrowski, P.; Megiel, E. One-pot synthesis of gold nanoparticles densely coated with nitroxide spins. Polyhedron 2012, 46, 119–123. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D.; Hiltunen, R. Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Lowry, O.H.; Roserbough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Monteiro, M.C.; de la Cruz, M.; Cantizani, J.; Moreno, C.; Tormo, J.R.; Mellado, E.; De Lucas, J.R.; Asensio, F.; Valiante, V.; Brakhage, A.A.; et al. A new approach to drug discovery: High-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J. Biomol. Screens 2012, 17, 542–549. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Hudman, D.A.; Sargentini, N.J. Resazurin-based assay for screening bacteria for radiation sensitivity. Springerplus 2013, 2, 55. [Google Scholar] [CrossRef] [Green Version]
Chemical Constituents | Test Method | M. oleifera Leaves Extract |
---|---|---|
Alkaloids | Dragendroff’s test | + |
Tannins | Ferric chloride | + |
Flavonoids | Shinoda test | + |
Steroids | Salkowski reaction | + |
Saponins | Foam test | + |
Polyphenols | Puncal-D | + |
Glycosides | Conc. H2SO4 and heat | + |
Carbohydrates | Anthrone test | + |
Proteins | Ninhydrin test | + |
Amino acids | Millon’s test | + |
Sample | Total Phenolic Content (mg/g of Dried Leaves) |
---|---|
M. oleifera leaves extract (before synthesis) | 23.0 ± 0.3 |
M. oleifera leaves extract (after synthesis) | 17.0 ± 0.4 |
Sample | Amount (µg) | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
Ascorbic acid (standard) | 34.4 | 55.1 | 67.2 | 75.8 | 84.4 |
M. oleifera leaves extract | 55.1 | 58.6 | 63.7 | 65.5 | 65.5 |
Bismuth nanoparticles | 25.8 | 37.9 | 37.9 | 48.2 | 60.3 |
Sample | Concentration (µg/mL) (Ascorbic Acid Equivalent) | ||||
---|---|---|---|---|---|
200 | 400 | 600 | 800 | 1000 | |
M. oleifera leaves extract | 130 | 260 | 410 | 530 | 690 |
Bismuth nanoparticles | 50 | 50 | 50 | 60 | 60 |
No. | Bacterial Species | Classification | Localization or Possible Infection Sites in the Human Body |
---|---|---|---|
1 | Escherichia coli | Gram-negative | Lower intestine |
2 | Klebsiella pneumoniae | Gram-negative | Upper respiratory tract |
3 | Staphylococcus aureus | Gram-positive | Upper respiratory tract |
4 | Enterococcus faecalis | Gram-positive | Gastrointestinal tract |
Bacterial Species | MIC (µg/mL) | Fungi | MIC (µg/mL) |
---|---|---|---|
E. coli + M. oleifera extract | 500 | A. niger + M. oleifera extract | 62.5 |
E. coli + M. oleifera Bismuth NPs | 500 | A. niger + M. oleifera Bismuth NPs | 250 |
K. pneumoniae + M. oleifera extract | 250 | A. flavus + M. oleifera extract | 62.5 |
K. pneumoniae + M. oleifera Bismuth NPs | 500 | A. flavus + M. oleifera Bismuth NPs | 250 |
S. aureus + M. oleifera extract | 250 | C. albicans + M. oleifera extract | 125 |
S. aureus + M. oleifera Bismuth NPs | 500 | C. albicans + M. oleifera Bismuth NPs | 62.5 |
E. faecalis + M. oleifera extract | 250 | C. glabrata + M. oleifera extract | 250 |
E. faecalis + M. oleifera Bismuth NPs | 250 | C. glabrata + M. oleifera Bismuth NPs | 62.5 |
No. | Bacterial Species | Growth of Bacteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | 1000 (1) | 500 (2) | 250 (3) | 125 (4) | 62.5 (5) | 31.2 (6) | 15.6 (7) | 7.8 (8) | Streptomycin (10 µg/500 µL) | Negative Control | Nutrient Broth | |
M. oleifera Leaves Extract | ||||||||||||
1 | E. coli | - | - | + | + | + | + | + | + | - | + | + |
2 | K. pneumoniae | - | - | - | + | + | + | + | + | - | + | + |
3 | S. aureus | - | - | - | + | + | + | + | + | - | + | + |
4 | E. faecalis | - | - | - | + | + | + | + | + | - | + | + |
Bismuth Nanoparticles | ||||||||||||
1 | E. coli | - | - | + | + | + | + | + | + | - | + | + |
2 | K. pneumoniae | - | - | + | + | + | + | + | + | - | + | + |
3 | S. aureus | - | - | + | + | + | + | + | + | - | + | + |
4 | E. faecalis | - | - | - | + | + | + | + | + | - | + | + |
No. | Fungal Species | Localization or Possible Infection Sites in the Human Body |
---|---|---|
1 | Aspergillus niger | Lungs |
2 | Aspergillus flavus | Lungs, eyes, and ears |
3 | Candida albicans | Gastrointestinal tract and mucosal tissues |
4 | Candida glabrata | Mucosal tissues |
No. | Fungal Species | Growth of Fungi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | 1000 (1) | 500 (2) | 250 (3) | 125 (4) | 62.5 (5) | 31.2 (6) | 15.6 (7) | 7.8 (8) | Ketoconazole (10 µg/500 µL) | Negative Control | Nutrient Broth | |
M. oleifera leaves extract | ||||||||||||
1 | Aspergillus niger | - | - | - | - | - | + | + | + | - | + | + |
2 | Aspergillus flavus | - | - | - | - | - | + | + | + | - | + | + |
3 | Candida albicans | - | - | - | - | + | + | + | + | - | + | + |
4 | Candida glabrata | - | - | - | + | + | + | + | + | - | + | + |
Bismuth Nanoparticles | ||||||||||||
1 | Aspergillus niger | - | - | - | + | + | + | + | + | - | + | + |
2 | Aspergillus flavus | - | - | - | + | + | + | + | + | - | + | + |
3 | Candida albicans | - | - | - | - | - | + | + | + | - | + | + |
4 | Candida glabrata | - | - | - | - | - | + | + | + | - | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.E.; Majdalawieh, A.F.; Abu-Yousef, I.A.; Narasimhan, S.; Poltronieri, P. Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials 2020, 13, 876. https://doi.org/10.3390/ma13040876
Das PE, Majdalawieh AF, Abu-Yousef IA, Narasimhan S, Poltronieri P. Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials. 2020; 13(4):876. https://doi.org/10.3390/ma13040876
Chicago/Turabian StyleDas, Prince Edwin, Amin F. Majdalawieh, Imad A. Abu-Yousef, Srinivasan Narasimhan, and Palmiro Poltronieri. 2020. "Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities" Materials 13, no. 4: 876. https://doi.org/10.3390/ma13040876
APA StyleDas, P. E., Majdalawieh, A. F., Abu-Yousef, I. A., Narasimhan, S., & Poltronieri, P. (2020). Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials, 13(4), 876. https://doi.org/10.3390/ma13040876