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Abstract: As a promising strategy for the treatment of various diseases, gene therapy has attracted
increasing attention over the past decade. Among various gene delivery approaches, non-viral vectors
made of synthetic biomaterials have shown significant potential. Due to their synthetic nature,
non-viral vectors can have tunable structures and properties by using various building units.
In particular, they can offer advantages over viral vectors with respect to biosafety and cytotoxicity.
In this study, a well-defined poly(ethylene glycol)-block-poly(α-(propylthio-N,N-diethylethanamine
hydrochloride)-ε-caprolactone) diblock polymer (PEG-b-CPCL) with one poly(ethylene glycol)
(PEG) block and one tertiary amine-functionalized cationic poly(ε-caprolactone) (CPCL) block,
as a novel non-viral vector in the delivery of plasmid DNA (pDNA), was synthesized and studied.
Despite having a degradable polymeric structure, the polymer showed remarkable hydrolytic
stability over multiple weeks. The optimal ratio of the polymer to pDNA for nanocomplex formation,
pDNA release from the nanocomplex with the presence of heparin, and serum stability of the
nanocomplex were probed through gel electrophoresis. Nanostructure of the nanocomplexes was
characterized by DLS and TEM imaging. Relative to CPCL homopolymers, PEG-b-CPCL led to better
solubility over a wide range of pH. Overall, this work demonstrates that PEG-b-CPCL possesses
a range of valuable properties as a promising synthetic vector for pDNA delivery.

Keywords: Non-viral gene delivery; cationic polymer; poly(ε-caprolactone); poly(ethylene glycol);
ring-opening polymerization (ROP); polyplex; nanocomplex; plasmid DNA (pDNA); PEGylation

1. Introduction

The first clinical study on gene therapy was conducted at the National Institutes of Health (NIH)
in 1989, and it demonstrated that genetically modified human cells could be transferred to patients
in a feasible and safe manner [1]. Following this study, almost 2600 clinical trials on gene therapy
have been initiated or performed worldwide through November 2017 [2]. Thus far, six gene delivery
products have been approved by the U.S. Food and Drug Administration (FDA), European Marketing
Authorization (EMA), and the China Food and Drug Administration (CFDA), indicating steady
development and growing confidence in gene therapy [2].
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Nucleic acid, as the building block of genes, is highly polar, incapable of diffusing through
cell membranes effectively [3]. Moreover, DNA therapeutics can undergo degradation by
endonucleases in physiological fluids and the extracellular space [4]. Therefore, various approaches
for gene transfer—such as physical, biological (viral vectors), and biomaterial (non-viral vectors)
transfection methods—have been developed [3,5,6]. Physical methods involve the direct insertion
of genes into the cells and can be categorized into mechanical approaches (microinjection [7]
and particle bombardment [8,9]), electroporation [10], sonoporation [11], laser irradiation [12],
and magnetofection [13]. Despite the safety and simplicity of genetic materials injections without
any carrier, these technologies suffer mainly from fast clearance, rapid degradation by nucleases,
and limited local distribution in tissue, although they can be improved by external means such as
electric field and ultrasound positioning [5,14,15]. Extensively studied viral vectors as biological
carriers for genetic materials, in spite of having suitable transfection efficiencies, can cause serious
concerns including cytotoxicity, cargo capacity, immunogenicity, and difficulty in vector scale-up [16,17].
Concerns related to viral vectors may be circumvented by the exploitation of non-viral biomaterials as
the delivery vectors. However, non-viral vectors have shown lower transfection efficiencies compared
to viral vectors, which have spurred researchers to optimize their design [4]. Non-viral vectors can be
categorized into lipids, cationic polymers, peptides, nucleic acid, and inorganic nanoparticles [4,18].

Among the non-viral vectors, cationic polymers (synthetic and natural) have been actively
studied [19]. Given the negative charge of therapeutic nucleic acid-based macromolecules, their systemic
delivery was achieved through electrostatic interactions with cationic polymers to form spherical
nanoparticles, which are termed polyplexes or nanocomplexes [4]. The polyplex envelops therapeutic
DNA, protects nucleic acid cargo from endonuclease degradation, and improves in vivo circulation
time [4]. Versatile formulation of polymeric structures with post-polymerization modifications allows
polyplexes to be tuned so that their enhanced gene delivery may approach the ideal case of viral
vectors. Poly(L-lysine) (PLL) and polyethyleneimine (PEI) are among the early and mostly studied
cationic polymeric DNA vectors for gene delivery [4]. PEIs with various molecular weight (MW)
and non-degradable structures (linear or branched) can exhibit different transfection efficiencies and
toxicity [19]. Naturally-derived cationic polymers, such as chitosan and modified gelatin, have been
studied for gene delivery, but the corresponding transfection efficiencies are typically quite limited [20].

Among various cationic polymers, we are particularly interested in cationic aliphatic polyesters
as novel biodegradable non-viral vectors for gene delivery applications [21–24]. Our previous studies
on tertiary amine-functionalized cationic polylactides (CPLAs) showed effectiveness as vectors for
the delivery of pDNA and small interfering ribonucleic acid (siRNA) [25–29]. Relative to CPLA
homopolymers, well-defined poly(ethylene glycol)-block-cationic polylactide (PEG-b-CPLA) diblock
copolymers can further lead to high levels of transfection and serum stability with low levels of
cytotoxicity and hemolysis [25]. Moreover, it was demonstrated that the CPLA-based nanocapsules
are effective vectors for individual delivery and co-delivery of genes and drugs to cancer cells [28].
The aforementioned merits of CPLAs and the derived biomaterials notwithstanding, they have
a relatively short shelf life in aqueous solutions due to their low hydrolytic stability, which restricts
their transformative potential in biomedical applications [26,28].

In this article, we report upon poly(ethylene glycol)-block-poly(α-(propylthio-N,N-diethylethana
mine hydrochloride)-ε-caprolactone) diblock polymer (PEG-b-CPCL) with one poly(ethylene glycol)
(PEG) block and one tertiary amine-functionalized cationic poly(ε-caprolactone) (CPCL) block (Figure 1),
as a novel potential vector for the delivery of pDNA. This well-defined diblock polymer is prepared
by ring-opening polymerization (ROP) and features tertiary amine-functionalized cationic groups
carried by the biodegradable poly(ε-caprolactone) (PCL) backbone. The existence of the ester group on
the PCL backbone ensures biodegradability and promotes the eventual elimination of the polymer
vector for in vivo applications. Because PCL has a lower density of ester groups than polylactide
(PLA), the CPCL-based polymer is expected to have higher hydrolytic stability than a CPLA-based
polymer. Conjugation of cationic tertiary amine groups on the hydrophobic PCL block of PEG-b-CPCL
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enables the polymer to form polyplexes with genetic material, mainly in the CPCL-based interior
domain of the polyplex nanostructure while protecting nucleic acid cargo from degradation by serum
endonucleases and evading immune detection. Moreover, because the tertiary amine groups of CPCL
block can adsorb protons within endosomes to induce proton sponge effect, the intracellular release
of polyplexes after endocytosis can be facilitated [26]. On the other hand, the hydrophilic PEG block
of the PEG-b-CPCL diblock copolymer results in a PEG-based exterior shell domain of the polyplex
nanostructure, leading to improved aqueous solubility and colloidal stability as well as increased
circulation time of the polyplexes through minimizing nonspecific interactions with serum components.
Figure 1 demonstrates how PEG-b-CPCL forms polyplexes with pDNA and facilitates the transfection
process upon administration.
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Figure 1. Non-viral pDNA delivery using PEG-b-CPCL.

2. Materials and Methods

2.1. Measurements

1H NMR measurements were conducted at 500 MHz using a Varian INOVA-500 (Varian, Inc., Palo
Alto, CA, USA). The temperature of all measurements were set at 25 ◦C and tetramethylsilane (TMS)
was used as an internal reference. VnmrJ software (v. 4.2, Agilent Technologies, Inc., Santa Clara, CA,
USA) with a university license was used to analyze the raw data.

The analysis of polymer MW and MW dispersity (Đ) was conducted using gel permeation
chromatography (GPC) technique. The instrument was a Viscotek GPC system (Malvern Panalytical,
Malvern, UK) having a VE-1122 pump, a VE-3580 refractive index (RI) detector, and two
mixed-bed organic columns (PAS-105M and PAS-103M). The GPC instrument was operated with
dimethylformamide (DMF; HPLC; with 0.01 M LiBr salt) as the mobile phase at a flow rate of 0.5 mL/min
at 55 ◦C. The calibration was conducted by using linear polystyrene standards purchased from Varian
(Varian, Inc., Palo Alto, CA, USA); peak MW (Mp) = 0.58, 1.53, 3.95, 10.21, 29.51, 72.45, 205, 467, 1319,
and 2851 kDa).

Hydrodynamic diameter (Dh) and zeta potential (ζ) of polymer:pDNA nanocomplexes were
analyzed by using dynamic light scattering (DLS). The instrument was a Zetasizer nano-ZS90 (Malvern
Panalytical, Malvern, UK), with a 4 mW 633 nm HeNe laser as the light source. All experiments were
conducted at a fixed measuring angle of 90◦ to the incident laser beam and 25 ◦C. Zetasizer Nano
software (v. 7.11, Malvern Panalytical, Malvern, UK) was used to analyze the raw data for both Dh

and ζ.
Transmission electron microscopy (TEM) images were taken using a JEOL 2010 microscope (JEOL

Ltd., Akishima, Japan). TEM samples were prepared using 400 mesh carbon-coated copper grids.
Sample solutions with DLS count rate of ~250 kcps in water were dip coated onto the TEM grids.
Then the water was completely dried under vacuum and no staining was applied for the samples.
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2.2. Materials

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD), methoxy poly(ethylene glycol) (mPEG45-OH; Mn ~
2000 Da, flakes), and hexamethylphosphoramide (HMPA; 99%) were purchased from Sigma-Aldrich
(Saint Louis, MO, USA). ε-Caprolactone (CL) monomer (99%), propargyl bromide (80 wt.% solution
in toluene, stabilized), lithium diisopropylamide (LDA; 2M solution in THF/n-hexane/ethylbenzene,
nitrogen flushed), lithium bromide (LiBr; 99+%, anhydrous), sodium chloride (99+%), benzyl alcohol
(BnOH; 99%), nile red (99%), and 2,2′-dimethoxy-2-phenylacetophenone (DMPA; 98%) were purchased
from Acros Organics (Geel, Belgium). Magnesium sulfate (99%, anhydrous), toluene (Certified ACS),
dichloromethane (DCM; HPLC), chloroform (HPLC), acetone (HPLC), tetrahydrofuran (THF, HPLC),
ethyl acetate (EA; HPLC), N,N′-dimethylformamide (DMF, HPLC), and diethyl ether (HPLC) were
purchased from Fisher Scientific (Waltham, Massachusetts, MA, UWA). 2-Diethylaminoethanethiol
hydrochloride (DEAET, >98%) was purchased from Amfinecom Inc. (Petersburg, VA, USA) Heparin
sodium salt from porcine intestinal mucosa (Grade I-A, ≥180 USP units/mg) was purchased from
Sigma-Aldrich (Saint Louis, MO, USA).

Toluene was refluxed over CaH2 for 2 h prior to distillation. THF was dried by distillation over
sodium-benzophenone when the solution was dark blue. Water content of mPEG45-OH was removed
by two times of azeotropic distillation in dry toluene at 175 ◦C. HMPA and CL were distilled from
CaH2 shortly before use. LDA, as a pyrophoric material that is highly flammable, water reactive,
toxic, corrosive and known to be carcinogenic and teratogenic, was used according to strict safety
guidelines. Deionized water, obtained from a Thermo Scientific Barnstead Nanopure ultra-pure water
system, was used for the preparation of all buffer solutions. All other chemicals were used without
further purification.

2.3. Synthesis of Allyl-Functionalized CL (ACL, 1)

ACL 1 was synthesized according to a previously reported procedure (Scheme 1) [30].
Briefly, 150 mL of freshly distilled dried THF was air-free transferred to a vacuum dried 250-mL
reaction flask with a magnetic stirring bar under vigorous nitrogen purging and cooled in a dry
ice/acetone bath. Upon reaching a solution temperature of −78 ◦C, the LDA solution (2.0 M, 25 mL)
was carefully added dropwise to the reaction flask. After stirring for a few minutes, a diluted solution
of CL (5.00 g) in THF (30 mL) was added slowly over a period of 1 h. This mixture was stirred at −78
◦C for another 1 h, and allyl bromide (6 mL) in HMPA (10 mL) was added dropwise. The reaction
system was allowed to warm up over 1 h to −45 ◦C and was kept at this temperature for another
1.5 h. The reaction was quenched by adding a saturated NH4Cl solution to the flask. The reaction
mixture was allowed to warm up to room temperature and then washed with saturated NaCl and
NH4Cl solutions (3×). The upper organic layer was concentrated and added to cold diethyl ether. The
white precipitate was removed by filtration, and the filtrate was dried over magnesium sulfate and
concentrated under vacuum. The resulting crude product was purified through a silica gel column
chromatography eluted with hexane/EA (7/3) to give the desired product 1 (2.43 g, 36% yield; Rf =

0.35) in the form of a very light-yellow clear oil. Its chemical structure was confirmed by 1H NMR
analysis in CDCl3 (Figure 2).
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2.4. Synthesis of PEG-b-(Allyl-Functionalized PCL) (PEG-b-APCL, 2)

PEG-b-APCL 2 was synthesized based on a literature method of ring-opening polymerization
(ROP) of ACL 1 using TBD as organocatalyst [31,32]. A 10-mL Schlenk flask with a magnetic stirring
bar was flamed dried under vacuum and refilled with nitrogen (3×). Preweighted amount of dried
mPEG45-OH macroinitiator (65.69 mg, 33 µmol, 1.0 equiv.) and dry TBD (22.86 mg, 164 µmol, 5.0 equiv.)
were dissolved in dry toluene (2.5 mL), and then added to the flask via nitrogen-purged syringe.
The solution was stirred for 30 min at room temperature. ACL monomer 1 (500 mg, 3.28 mmol,
100 equiv.) was dissolved in dry toluene (2.5 mL) and added to the flask with an air-free syringe to
start ROP at room temperature. GPC and 1H NMR characterizations were used to monitor the ROP
process and monomer conversion, respectively. Once the desired monomer conversion was achieved
after 19 h, the reaction was quenched by adding several drops of acetic acid. The polymer was isolated
by precipitation in cold diethyl ether (3×) to obtain a beige pasty solid (150 mg, conversion 32%,
yield 94%). Figure 3 shows the 500 MHz 1H NMR spectrum of PEG-b-APCL (2) in CDCl3.
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2.5. Synthesis of PEG-b-CPCL-70 (3)

In a 10-mL Schlenk flask with a magnetic stirring bar, PEG-b-PCL (2) (150 mg, 705 µmol of allyl
group) was dissolved in 5 mL anhydrous chloroform. DEAET (110 mg, 756 µmol, 1.1 equiv. relative
to allyl group) and DMPA (36 mg, 141 µmol, 0.2 equiv. relative to allyl group) were added to the
reaction flask. The reaction flask was sealed carefully, and the reaction mixture was degassed by five
freeze-pump-thaw cycles, followed by irradiation with UV light (λmax = 365 nm) for 40 min. Then the
reaction mixture was dialyzed against DCM for 4 days (MW cut-off (MWCO) = 3.5 kDa) and dried
under vacuum to obtain PEG-b-CPCL-70 (3, the number 70 indicating mole percent of amine group
relative to CL unit) as a white pasty solid (166 mg, 76% isolated yield). Figure 4 shows 500 MHz 1H
NMR spectrum of PEG-b-CPCL-70 (3) in CDCl3.
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2.6. Synthesis of Allyl-Functionalized Poly(ε-caprolactone) (APCL) (4)

Based on a literature method of ring-opening polymerization (ROP) of ACL 1 using TBD as
an organocatalyst [31,32], APCL (4) was synthesized. In a 10-mL flamed dried Schlenk flask with
a magnetic stirring bar under nitrogen atmosphere, TBD (45 mg, 324 µmol, 3.5 equiv.) was dissolved
in dry toluene (5.0 mL), followed by the addition of BnOH (10 mg, 92.6 µmol in a stock solution in
dry toluene, 1.0 equiv.). The mixture was then stirred for 30 min at room temperature under nitrogen
protection. ACL monomer 1 (1.00 g, 6.50 mmol, 70 equiv.) was dissolved in dry toluene (5.0 mL) and
added to the flask with an air-free syringe to start ROP at room temperature. ROP was allowed to
continue until it reached desired monomer conversion, as observed by 1H NMR analysis. After 13.5 h,
ROP was quenched by adding several drops of acetic acid. APCL was isolated by precipitation in cold
methanol (3×), yielding a light-yellow viscous oil (333 mg, 50% conversion of 1, 67% isolated yield).
Figure 5 illustrates the 500 MHz 1H NMR spectrum of APCL (4) in DMSO-d6.
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2.7. Synthesis of Cationic Poly(ε-caprolactone) (CPCL) (5)

For the synthesis of CPCL-50 and CPCL-95 (the numbers, i.e., 50 and 95, indicating mole percent
of amine group relative to CL unit), in a 10-mL Schlenk flask with a magnetic stirring bar, APCL (4)
(75.0 mg, 495 µmol of allyl group) was dissolved in 3.0 mL of anhydrous DCM. For the preparation of
CPCL-50, DEAET (52 mg, 371 µmol, 0.75 equiv. relative to allyl group) and DMPA (25 mg, 99 µmol,
0.2 equiv. relative to allyl group) were added to the reaction flask. For the preparation of CPCL-95,
DEAET (210 mg, 1.48 mmol, 3.0 equiv. relative to allyl group) and DMPA (50 mg, 198 µmol, 0.4 equiv.
relative to allyl group) were used. The reaction flasks were sealed carefully, and the reaction mixtures
were degassed by five freeze-pump-thaw cycles. They were irradiated by UV light (λmax = 365 nm) for
1 h and 3 h to obtain CPCL-50 and CPCL-95, respectively. The reaction mixtures were then precipitated
in hexane (3×) and dialyzed against DCM (MWCO = 3.5 kDa) for 4 days and vacuum dried to obtain
pure products. CPCL-50 (89 mg, 50% conversion of allyl groups, 81% isolated yield) and CPCL-95
(125 mg, 95% conversion of allyl groups, 88% isolated yield) were in the form of light yellow and brittle
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white hygroscopic solids, respectively. Figure 6 illustrates the 500 MHz 1H NMR spectrum of CPCL-50
in DMSO-d6, which is similar to the spectrum of CPCL-95 (not shown).
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2.8. Study of Hydrolytic Stability of PEG-b-CPCL-70 (3)

Two PBS buffer solutions of pH 5.5 and 7.4 at a concentration of 25 mM were prepared.
PEG-b-CPCL-70 was dissolved in prepared buffer medium at a concentration of 1 mg/mL. The solutions
were then transferred to separate sealed vials and incubated at 37 ◦C with mild shaking. At specific
time intervals, aliquots from each vial were taken and completely dried under vacuum to remove any
moisture. The resulting solid was dissolved in DMF (containing 0.01 M LiBr) and analyzed with GPC
to assess hydrolytic stability.

2.9. Preparation of Polymer:pDNA Nanocomplexes

Nanocomplexes were formed based on spontaneous electrostatic interactions between
PEG-b-CPCL-70 and pCMV-EGFP pDNA at various polymer:pDNA mass ratios. The pDNAs
were produced by an Escherichia coli bacterial host (GeneHogs, Invitrogen), with an enhanced green
fluorescent protein reporter gene, driven by a cytomegalovirus promoter within plasmids (pCMV-EGFP,
Addgene). A stock aqueous solution of polymer was prepared at a concentration of 4 mg/mL in
ultrapure water. For each polymer:pDNA nanocomplex mass ratio, a specific amount of polymer
solution was mixed with a pDNA solution, gently vortexed, and incubated for 30 min to ensure the
formation of polymer:pDNA nanocomplexes. For example, for the preparation of nanocomplex at
200:1 of PEG-b-CPCL-70:pDNA mass ratio, 400 µL of polymer stock solution (4 mg/mL) was mixed
with pCMV-EGFP pDNA (with a final concentration of 8 µg/mL) to a final volume of 1 mL.

2.10. N/P Ratio Calculation

N/P ratio denotes the molecular ratio of cationic amine groups (N) in the PEG-b-CPCL-70 to
anionic phosphate groups (P) in pDNA [33]. The mass per mole for one anionic charge (P) of pDNA is
330 g/mol [34], whereas the mass per mole for one cationic charge (N) of PEG-b-CPCL-70 is 465 g/mol.
The value of 465 g/mol was obtained by dividing Mn

NMR of PEG-b-CPCL-70 with the number of
cationic amine groups (N) of the polymer. Therefore, in a PEG-b-CPCL-70:pDNA nanocomplex,
the N/P ratio was calculated as:

N/P =

(
µg of polymer

465 (g/mol)

)
(
µg of pDNA
330 (g/mol)

) (1)

This equation was used to convert PEG-b-CPCL-70:pDNA mass ratios to N/P ratios (N/P ratios =

0.71 mass ratios).
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2.11. pDNA Gel-shift Assay

The polymer:pDNA nanocomplexes were tested with a gel electrophoresis assay. Samples of
nanocomplexes were loaded into a 1% agarose gel with ethidium bromide staining and electrophoresed
at 100 V for 30 min. Gels were visualized under UV after electrophoresis to evaluate the pDNA shift at
various polymer:pDNA mass ratios for nanocomplex formation.

2.12. pDNA Release by Polyanionic Heparin

The binding of pDNA to the polymeric domain within the nanocomplex was examined using
polyanionic heparin to release the pDNA [35]. Nanocomplexes were prepared at a polymer:pDNA
mass ratio of 200:1 to guarantee the complete condensation of pDNA in the cationic polymer matrix,
followed by incubation at 37 ◦C for 1 h. The samples with various nanocomplex:heparin mass ratios
were run on an agarose gel electrophoresis system as described earlier.

2.13. Serum Stability of Polymer:pDNA Nanocomplexes

The stability of pDNA in PEG-b-CPCL-70:pDNA nanocomplexes against fetal bovine serum (FBS,
Atlanta Biologicals) was studied by agarose gel electrophoresis [36]. A 300µL solution of polymer:pDNA
nanocomplexes at a 200:1 mass ratio was incubated with 10% FBS for 24 h. Aliquots of 25 µL at different
time points were taken and frozen immediately. Prior to agarose gel electrophoresis, 4 µL (1 mg/mL)
of polyanionic heparin solution was added to each aliquot to ensure the release of pDNA from
nanocomplexes. Intact pDNA species were then assessed by comparing DNA fragmentation patterns.

3. Results and Discussion

3.1. Synthesis and Characterization of PEG-b-CPCL-70 (3) and CPCLs (5)

Aliphatic polyesters are among the most widely studied synthetic polymers for biomedical
applications due to their remarkable biodegradability. In our previous studies, we investigated
the delivery of genetic material, such as pDNA and siRNA, using CPLAs [25–27]. It was found
that these PLA-based materials have promising transfection efficiency, but they suffer from fast
hydrolytic degradation (i.e., they degrade in aqueous solutions within a week), which limits their
practical application [25,27]. Besides PLA, PCL composed of hexanoate repeating units is also a
predominant aliphatic polyester and has been utilized extensively in biomedical applications. PCL
has a lower density of ester groups on its backbone, and, therefore, offers slower degradation
under biologically relevant conditions in comparison to PLA. The degradation of PCL produces
6-hydroxyhexanoic acid as the eventual small-molecule degradation residue, which is a natural
human body metabolite. Generally, PCL can biodegrade over a longer time span from several months
to several years, depending on MW, degree of crystallinity, and the condition of degradation [37].
Moreover, relative to PLA, PCL provides a more hydrophobic domain, which is less accessible to water
due to the presence of five hydrophobic methylene moieties on each repeating unit of PCL. Therefore,
in this study, we investigated tertiary amine-based CPCL polymers for pDNA delivery. Specifically,
PEGylated CPCL, i.e., PEG-b-CPCL, was the polymer of interest in this investigation because of the
merit of PEGylated synthetic vectors, as revealed in our previous work [25]. Non-PEGylated CPCLs
were used along with PEGylated CPCLs in buffer solubility tests.

Because polymer synthesis for advanced applications such as drug/gene delivery requires the
control over the polymer MW, MW dispersity (Đ), and functional groups, synthetic routes of these
CPCL-based polymers were designed with two key steps: (1) the living ROP of ACL 1 to obtain
APCL-based precursor polymers, and (2) the subsequent post-polymerization transformation of allyl
groups to tertiary amine groups via thiol-ene click functionalization. ACL 1 was prepared following
an approach from the literature (Scheme 1) [30], with chemical structure verified by 1H NMR analysis
in CDCl3 (Figure 2).
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Scheme 2 illustrates the synthesis of PEGylated and non-PEGylated CPCLs. In the living ROP of
1, TBD was used as the organocatalyst because it has relatively high catalytic efficacy that can result in
dual activation of both monomer and alcoholic initiator [31], leading to the ROP process of CL monomer
in a rapid and well-controlled manner (with a linear relationship between conversion and MW). The
preparation of PEG-b-APCL, i.e., the diblock precursor of PEG-b-CPCL, was carried out in toluene at
room temperature for 19 h by using mPEG45-OH (MW: 2000 Da; ĐGPC = 1.03) as the macroinitiator for
ROP of 1 ([M]0:[I]0:[TBD] = 100:1:5; ~32% conversion of 1). The well-defined chemical structure of
the resulting PEG45-b-APCL32 (i.e., 2) was verified by 500 MHz 1H NMR analysis in CDCl3 (Figure 3).
The number-average degree of polymerization (DPn) of 32 for the APCL block was determined based
on a comparison of resonance intensity of CH2OCO protons of the APCL block centered at 4.04 ppm
with that of CH2CH2O protons of the PEG block at 3.83 ppm. Thus, 1H NMR analysis revealed a
number-average MW (Mn

NMR) of 6.8 kDa for 2. Moreover, according to GPC analysis, 2 has a Mn
GPC

of 6.3 kDa with a ĐGPC of 1.09, relative to linear polystyrene standards. The narrow and mono-modal
GPC peak of 2 also indicates a well-control diblock formation as a result of the living ROP processing.
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Scheme 2. Synthesis of PEG-b-CPCL (3) and CPCL (5).

Subsequently, UV-induced thiol-ene functionalization of 2 was conducted in chloroform at room
temperature under UV irradiation (λmax = 365 nm) for 40 min, using DEAET as the functionalization
agent and DMPA as the photoinitiator ([ene from 2]0:[SH from DEAET]0:[DMPA]0 = 1:1.1:0.2).
The resulting diblock copolymer 3, i.e., PEG45-b-CPCL32-70 (Mn

NMR = 10.7 kDa), has 70 mol % of
tertiary amine groups relative to CL-based repeating units, according to 1H NMR analysis based upon
quantification of resonance intensities of characteristic methylene protons of the amine moieties at
~3.0–3.4 ppm and the remaining allyl protons at 5.02 and 5.74 ppm relative to the CH2OCO protons of the
APCL block at 4.40 ppm (Figure 4). GPC analysis showed a Mn

GPC of 9.6 kDa with a ĐGPC of 1.15 for 3.
It should be noted that the low Đ of 3 is preferred for gene delivery applications, because polymers with
high Đ values may potentially lead to nanocomplexes with broad size distributions and consequently
less controlled biophysical and biomedical properties. GPC curves of mPEG45-OH macroinitiator,
2, and 3 are shown in Figure 7a.
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Figure 7. (a) GPC characterization of mPEG45-OH as the ROP macroinitiator, PEG-b-APCL (2),
and PEG-b-CPCL-70 (3) with DMF as eluent. (b) GPC curves of 3 after incubation at pH 5.5 PBS buffer
at 37 ◦C. (c) GPC curves of 3 after incubation at pH 7.4 PBS buffer at 37 ◦C.

CPCL35-50 and CPCL35-95 (5, DPn of 35, with 50 mol % and 95 mol % of tertiary amine groups
relative to CL-based repeat units, respectively) were synthesized using the same method for the
preparation of 3, except that BnOH was used as the initiator in the first ROP step (Scheme 2).
Allyl-functionalized CL monomer 1 was polymerized via ROP with TBD as organocatalyst and BnOH
as initiator ([1]0:[BnOH]0:[TBD]0 = 70:1:5; at room temperature for 13.5 h, in dry toluene; ~50% overall
conversion of 1). The chemical structure of the resulting APCL (i.e., 4) was verified via 500 MHz 1H
NMR analysis in DMSO-D6 (Figure 5). The DPn of 35 was determined based on the comparison of
resonance intensity of CH2OCO protons of PCL block at ~4.0 ppm and terminal aromatic protons
at ~7.2 ppm. Accordingly, the number-average molecular weight (Mn

NMR) of 5.3 kDa was obtained
for 4. GPC analysis revealed that a Mn

GPC of 3.5 kDa and a ĐGPC of 1.11 for 4, relative to linear
polystyrene standards (Figure 8). With the progress of ROP, GPC curves of the resulting polymer
species shifted to the high MW side (i.e., left) while maintaining low ĐGPC values, suggesting a
living polymerization behavior. The low-MW tails of the GPC curves might indicate the minor
formation of oligomer presumably due to a trace amount of impurities which affected the ROP
process. Nevertheless, the oligomer can be removed through the work-up procedure. Following
the same procedure to synthesize 3, CPCL-50 and CPCL-95 (both referred as 5) were prepared by
UV-induced thiol-ene functionalization of 4 with DEAET at room temperature, with [ene from 4]0:[SH
from DEAET]0:[DMPA]0 of 1:0.7:0.2 (1 h) and 1:3:0.4 (3 h), respectively. Conversion of the allyl groups
for CPLAs 5 was determined by 1H NMR analysis (Figure 6), using the approach the same as the
quantification of the functionalization extent of 3.
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3.2. Hydrolytic Stability of PEG-b-CPCL-70 (3)

As compared with PLA, PCL as a biodegradable polyester has very slow hydrolytic degradation,
and literature reports that it takes more than a year for either bulk or nanostructured PCL to start
showing major degradations under aqueous environments at 37 ◦C [38], although the degradation
of PCL becomes faster at elevated temperatures [39,40]. The hydrolytic stability of PCL relative
to PLA is among the key considerations for us to design CPCL-based polymers for gene delivery
applications. Before performing a hydrolytic stability study for CPCL-based polymers, their aqueous
solubility (Table 1) was probed at the concentration of 1.0 mg/mL in 25 mM PBS buffer at 37
◦C and physiologically relevant pH values of 7.4 (representative pH for human blood) and 5.5
(representative pH for endosomes). PEG45-b-CPCL32-70 showed aqueous solubility at both pHs.
On the other hand, CPCL35-50, and CPCL35-95 were only soluble at pH 5.5; they formed cloudy
dispersions at pH 7.4 with the assistance of sonication, but polymers precipitated a few days later. The
pH-dependent solubility of CPCLs can be ascribed to the protonation of the amine group at lower
pH that favors a dissolving process. The incorporation of the hydrophilic PEG block with CPCL leads
to higher and less pH-dependent solubility of the resulting diblock copolymer relative to CPCLs.
Therefore, the subsequent hydrolytic stability study was focused on PEG45-b-CPCL32-70 (3).

Table 1. Solubility of CPCLs and PEG-b-CPCL (3) in 25 mM PBS buffer at pH 5.5 and 7.4 at 37 ◦C.

Polymer Solubility in

PBS pH 5.5 PBS pH 7.4

PEG-b-CPCL-70 (3)
√ √

CPCL-50
√

×

CPCL-95
√

×

√
: soluble, ×: insoluble

Hydrolytic stability of 3 was investigated over a period of 12 weeks at 25 mM PBS buffers of pH 5.5
and 7.4 at 37 ◦C, based on GPC monitoring of the incubated solutions (Figure 7b,c). GPC results showed
similar hydrolytic stability of 3 at both pH 5.5 and 7.4. Throughout the period, the polymer peak
maintained its original position with gradually appearing shoulders. The shoulder at the low-MW side
was less significant, indicating a quite slow hydrolytic degradation. The shoulder at the high-MW side
became more noticeable after the first week of incubation, presumably because of the minor occurrence
of intermolecular linking reactions of CPCL blocks via the remaining allyl groups. In contrast to the
relatively fast degradation of CPLAs [25], the remarkable hydrolytic stability of 3 can be attributed to
its significantly lower ester group density on the more hydrophobic aliphatic polyester backbone.

3.3. Nanocomplex Formation and Characterization

Gel electrophoresis is a direct approach to assess the stability of pDNA in a gene delivery
formulation. In order to evaluate the appropriate polymer:pDNA mass ratio for the nanocomplex
formation (N/P = 0.71 is equivalent to polymer:pDNA mass ratio of 1:1), agarose gel electrophoresis
was implemented to visualize how much PEG45-b-CPCL32-70 is needed to complex with pCMV-EGFP
pDNA (Figure 9). At a 1:1 mass ratio of polymer:pDNA (lane 8), most of the pDNA was not complexed
and showed migration similar to naked pDNA (lane 9). At mass ratios of 10:1 (lane 7) and 20:1 (lane 6),
the migration of pDNA in the electric field was still noticeable, evidently slower than naked pDNA,
indicating that free pDNA was absent, but the electrostatic interaction of pDNA with polymer was
relatively weak. It was observed that at a polymer:pDNA mass ratio of 50:1 (lane 5), migration of
pDNA was significantly retarded, indicating a high level of complexation of PEG45-b-CPCL32-70 with
pCMV-EGFP pDNA. Further increase in the mass ratio (100:1 or higher; lanes 1–4) resulted in an even
slower migration of pDNA, indicating the stronger electrostatic interaction of pDNA with the polymer.
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follows: (1)–(8) PEG45-b-CPCL32-70:pCMV-EGFP pDNA nanocomplexes at mass ratios of (1) 1000:1,
(2) 500:1, (3) 200:1, (4) 100:1, (5) 50:1, (6) 20:1, (7) 10:1, (8) 1:1; (9) pDNA, and (10) molecular weight
marker (DNA ladder). For the polymer:pDNA mass ratio of 1:1, N/P is 0.71. The concentration of
pDNA in each well is 8 µg/mL.

The surface charge and hydrodynamic size of the nanocomplexes in water were further investigated
by dynamic light scattering (DLS) analysis. As shown in Figure 10, the number-average hydrodynamic
diameter (Dh,N) of nanocomplexes increased with the increase in polymer:pDNA mass ratio in the
range of 20:1 (Dh,N = 118 ± 5 nm) to 200:1 (Dh,N = 240 ± 4 nm). Such tunable sizes of the nanocomplexes
may be helpful to optimize their gene delivery efficacy because gene transfer studies using parenchymal
liver cells as the model cell line suggested that the diameter of sinusoidal fenestrae exerts a size limit
for effective vectors [41,42]. Because PEG45-b-CPCL32-70 is positively charged, zeta potential (ζ) of
nanocomplexes also increased with the increase in polymer:pDNA mass ratio in the range of 20:1
(ζ = 9 ± 1 mV) to 200:1 (ζ = 26 ± 2 mV). The significant ζ values observed for nanocomplexes at
high polymer:pDNA mass ratios can promote their colloidal stability, which is important for gene
delivery application.
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of nanocomplexes at various PEG-b-CPCL-70:pDNA mass and N/P ratios. The error bars represent the
standard deviation from 3 independent measurements.

The morphology and size of nanocomplexes were investigated with transmission electron
microscopy according to our previously published sample preparation method (TEM; Figure 11) [43].
The polymer:pDNA ratio of 200:1 for nanocomplexes was selected for TEM characterization, and the
corresponding TEM images showed their rough spherical morphologies, with a number-average
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surface diameter of 135 ± 17 nm. TEM provided a smaller average size and narrower size distribution
of nanocomplexes than DLS for the same nanocomplexes (Figure 12) because the nanocomplexes dried
and considerably shrank on the TEM grid while DLS gave hydrodynamic size distribution.
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3.4. pDNA Release and Serum Stability of Nanocomplexes

It is important to assess whether the nanocomplexes can provide protection for pDNA and also
allow the release of pDNA in biological conditions. Because direct observation of these phenomena
under cellular environments is more difficult, the release of pDNA from the nanocomplexes in aqueous
solutions in the presence of heparin (a model anionic polyelectrolyte biopolymer) and the serum
stability of the nanocomplexes were probed. Agarose gel electrophoresis was utilized in pDNA analysis
and nanocomplexes prepared at polymer:pDNA mass ratio of 200:1 (N/P = 142) were employed in
each study.

Heparin, as an anionic polyelectrolyte, is able to break the nanocomplex formed from
PEG-b-CPCL-70 and pDNA. In this study, various amounts of heparin were used to compete with
PEG-b-CPCL-70 until the pDNA was released from the nanocomplex. At a fixed polymer:pDNA mass
ratio of 200:1, which ensured nanocomplex formation, heparin solutions were added gradually, and the
mixed solutions were obtained with vortex stirring. The solutions were then incubated at 37 ◦C for 1 h,
followed by running gel electrophoresis to evaluate the unbinding behavior. Figure 13 illustrates the
UV visualized image of gel electrophoresis stained by ethidium bromide. It is observed that, with the
increase in the heparin mass, the pDNA started to unbind form the nanocomplex matrix. This can be
presumably attributed to electrostatic interaction between heparin and PEG-b-CPCL-70, which are
negative and positive polyelectrolytes, respectively. An incremental increase in the amount of heparin
provided more negative charge such that it could overcompensate the existing positive charge in the
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nanocomplex. Consequently, pDNA species were not bound to any cationic domain and able to be
released completely. From lane 3 to 9, pDNA species were gradually able to drift down the in the
electric field until in lane 10, and they were completely released as they gave the same spot lines as
naked pDNA in lane 11. Although heparin-triggered pDNA release is not cell-realistic and there are
many kinds of anionic species under cellular environments, the above result demonstrates that pDNA
can be released from the nanocomplexes via electrostatic interactions.
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Figure 13. pDNA release from PEG-b-CPCL-70:pDNA nanocomplexes at a 200:1 mass ratio (N/P = 142)
by increasing polyanionic heparin. The nanocomplexes were incubated for 1 h at 37 ◦C with different
amounts of heparin. (1)–(10) nanocomplex:heparin at mass ratios of (1) 1:0, (2) 1:0.001, (3) 1:0.002,
(4) 1:0.004 (5) 1:0.006, (6) 1:0.008, and (7) 1:0.01, (8) 1:0.02, (9) 1:0.04, (10) 1:0.06, (11) pDNA, and (12)
MW marker (DNA ladder).

Serum endonuclease is capable of fragmenting unprotected pDNA during in vivo transport.
One of the most important features of suitable polymeric gene delivery systems is to protect pDNA
formulations in the serum environment. Unprotected pDNA can undergo a fast break down in time
scales of less than an hour due to serum endonuclease [36]. The shielding feature of the PEG-b-CPCL-70
polymeric gene delivery system for pDNA against FBS was investigated directly with agarose gel
electrophoresis (Figure 14). Accordingly, 300 µL of polymer:pDNA nanocomplexes at a 200:1 mass
ratio (N/P = 142) was combined with 10% FBS and incubated at 37 ◦C for 24 h. At various time
points, aliquots of 25 µL were taken and frozen immediately to stop the serum degradation activity.
Prior to agarose gel electrophoresis, the samples were treated with 4 µL (1 mg/mL) polyanionic
heparin to enable pDNA to migrate in gel electrophoresis. Intact pDNA species demonstrate similar
migration and ethidium staining (lanes 2 to 10 in Figure 14) compared to the pDNA in lane 1 without
incubation. Whereas, after 24 h of incubation, the pDNA in lane 11 was almost entirely degraded to
smaller oligonucleotides.
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4. Conclusions

In summary, well-defined cationic PEG-b-CPCL was studied as a potential PEGylated non-viral
vector for pDNA delivery. It was synthesized by ROP of ACL using PEO45-OH macroinitiator,
followed by thiol-ene functionalization of the resulting diblock PEG-b-APCL. Its chemical structure
was confirmed by 1H NMR and GPC analysis. PEG-b-CPCL exhibited significant hydrolytic stability
and did not show a major occurrence of hydrolytic degradation in incubation for 12 weeks. Relative to
CPCLs with pH-dependent solubility, PEG-b-CPCL can provide solubility over a wide range of pH.
It can complex with pDNA to form positively surface-charged spherical nanoparticles, with both
hydrodynamic size and surface charge increasing with the increase in the polymer:pDNA ratio.
The nanocomplexes can protect pDNA and also allow the release of pDNA. PEG-b-CPCL possesses
a remarkable combination of biomedically relevant properties (i.e., significant hydrolytic stability,
biodegradability, and complexation ability with pDNA). The above results encourage further studies
to investigate PEG-b-CPCL as a promising synthetic vector for gene delivery applications.
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