Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Alkali Extraction
2.3. Hemicelluloses Characterization
2.4. Films Preparation
2.5. Films Characterization
3. Results and Discussion
3.1. Alkali Extracted Hemicellulose Characterization
3.2. Microstrucutre of Hemicellulose Fims
3.3. Thickness and Solubility of Hemicellulose Films
3.4. Mechanical Properties
3.5. Thermogravimetric Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cerqueira, M.A.; Souza, B.W.S.; Simões, J.; Teixeira, J.A.; Domingues, M.R.M.; Coimbra, M.A.; Vicente, A.A. Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydr. Polym. 2011, 83, 179–185. [Google Scholar] [CrossRef]
- Mohomane, S.M.; Motaung, T.E.; Revaprasadu, N. Thermal and degradation kinetics of sugarcane bagasse and soft wood cellulose. Materials 2017, 10, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börjesson, M.; Westman, G.; Larsson, A.; Ström, A. Thermoplastic and flexible films from arabinoxylan. ACS Appl. Polym. Mater. 2019, 1, 1443–1450. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Pinheiro, A.C.; Souza, B.W.S.; Lima, A.M.P.; Miranda, C.R.C.; Teixeira, J.A.; Moreira, R.A.; Coimbra, M.A.; Gonçalves, M.P.; Vicente, A.A. Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydr. Polym. 2009, 75, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Mendes, F.R.S.; Bastos, M.S.R.; Mendes, L.G.; Silva, A.R.A.; Sousa, F.D.; Monteiro-Moreira, A.C.O.; Cheng, H.N.; Biswas, A.; Moreira, R.A. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocoll. 2017, 70, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Goksu, E.I.; Karamanlioglu, M.; Bakir, U.; Yilmaz, L.; Yilmazer, U. Production and characterization of films from cotton stalk xylan. J. Agric. Food Chem. 2007, 55, 10685–10691. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.X.; Liu, C.F.; Sun, R.C. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr. Res. 2006, 341, 253–261. [Google Scholar] [CrossRef]
- Brienzo, M.; Siqueira, A.F.; Milagres, A.M.F. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem. Eng. J. 2009, 46, 199–204. [Google Scholar] [CrossRef]
- Unica. Available online: http://www.unicadata.com.br/historico-de-producao-e-moagem.php?idMn=31&tipoHistorico=2&acao=visualizar&idTabela=2333&produto=cana&safraIni=2018%2F2019&safraFim=2018%2F2019&estado=RS%2CSC%2CPR%2CSP%2CRJ%2CMG%2CES%2CMS%2CMT%2CGO%2CDF%2CBA%2CSE%2CAL%2CPE%2CPB%2CRN%2CCE%2CPI%2CMA%2CTO%2CPA%2CAP%2CRO%2CAM%2CAC%2CRR (accessed on 18 January 2020).
- Zhong, L.-X.; Peng, X.-W.; Yang, D.; Cao, X.-F.; Sun, R.-C. Long-chain anhydride modification: A new strategy for preparing xylan films. J. Agric. Food Chem. 2013, 61, 655–661. [Google Scholar] [CrossRef]
- Sun, J.X.; Sun, X.F.; Sun, R.C.; Su, Y.Q. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr. Polym. 2004, 56, 195–204. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Cerqueira, M.A.; Silva, H.D.; Rodríguez-Jasso, R.M.; Vicente, A.A.; Teixeira, J.A. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr. Polym. 2013, 92, 2154–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egüés, I.; Eceiza, A.; Labidi, J. Effect of different hemicelluloses characteristics on film forming properties. Ind. Crops Prod. 2013, 47, 331–338. [Google Scholar] [CrossRef]
- Huang, B.H.; Tang, Y.; Pei, Q.; Zhang, K.; Liu, D.; Zhang, X. Hemicellulose-based films reinforced with unmodified and cationically modified nanocrystalline cellulose. J. Polym. Environ. 2018, 26, 1625–1634. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Glactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 2013, 60, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Demosthenes, L.C.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; Garcia Filho, F.C.; Luz, F.S.; Oliveira, M.S.; Ramos, F.J.H.T.; Pereira, A.C.; Braga, F.O. Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. J. Mater. Res. Technol. 2019. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Sabiha-Hanim, S.; Siti-Norsafurah, M. Physical properties of hemicellulose films from sugarcane bagasse. Procedia Eng. 2012, 42, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
- Poletto, M.; Ornaghi Júnior, H.L.; Zattera, A.J. Native cellulose: Structure, characterization and thermal properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [Green Version]
- Ornaghi Júnior, H.L.; Moraes, A.; Poletto, M.; Zattera, A.J.; Amico, S. Chemical composition, tensile properties and structural characterization of buriti fiber. Cellulose Chem. Technol. 2016, 50, 15–22. [Google Scholar]
- Telmo, C.; Lousada, J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 2011, 35, 1663–1667. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characterization of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal. Chem. 1961, 33, 77–79. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Chang, R.C.; Chiu, Y.C. Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim. Acta 2007, 453, 97–104. [Google Scholar] [CrossRef]
- Park, S.-J.; Cho, M.-S. Thermal stability of carbon-MoSi2-carbon composites by thermogravimetric analysis. J. Mater. Sci. 2000, 35, 3525–3527. [Google Scholar] [CrossRef]
- Ornaghi Júnior, H.L.; Poletto, M.; Zattera, A.J.; Amico, S. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 2014, 21, 177–188. [Google Scholar] [CrossRef]
- Broido, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Polym. Sci. A 1969, 7, 1761–1773. [Google Scholar] [CrossRef]
- Yassin, A.Y.; Mohamed, A.-R.; Abdelrazek, E.M.; Morsi, M.A.; Abdelghany, A.M. Structural investigation and enhancement of optical, electrical and thermal properties of poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposite. J. Mater. Res. Technol. 2018, 8, 1111–1120. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Martí-Rosselló, T.; Zhang, X. Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures. J. Energy Inst. 2019, 92, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
Samples (w/v) | Thickness (mm) | Solubility (%) |
---|---|---|
2% | 0.040 ± 0.006 | 92.7 ± 3.5 |
3% | 0.036 ± 0.005 | 91.3 ± 2.2 |
4% | 0.035 ± 0.011 | 85.6 ± 8.1 |
Samples (w/v) | Tensile Strength (MPa) | Tensile Strain at Break (%) | Elastic Modulus (MPa) |
---|---|---|---|
2% | 9.2 ± 1.9 | 1.3 ± 0.4 | 8.9 ± 1.1 |
3% | 12.4 ± 0.9 | 0.8 ± 0.1 | 23.5 ± 1.7 |
4% | 22.3 ± 3.3 | 0.7 ± 0.2 | 38.9 ± 2.2 |
Samples (w/v) | IPDT (°C) | Ea (kJ mol−1) | R2 Values |
---|---|---|---|
2% | 715 | 67.2 | 0.950 |
3% | 794 | 84.8 | 0.992 |
4% | 663 | 73.1 | 0.951 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Braga, R.; Poletto, M. Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials 2020, 13, 941. https://doi.org/10.3390/ma13040941
da Silva Braga R, Poletto M. Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials. 2020; 13(4):941. https://doi.org/10.3390/ma13040941
Chicago/Turabian Styleda Silva Braga, Roberta, and Matheus Poletto. 2020. "Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse" Materials 13, no. 4: 941. https://doi.org/10.3390/ma13040941
APA Styleda Silva Braga, R., & Poletto, M. (2020). Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials, 13(4), 941. https://doi.org/10.3390/ma13040941