Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling
Abstract
:1. Introduction
2. Modeling
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, Y.; Wang, Q.; Hu, L.; Pan, H.; Shi, X. BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. Carbon 2019, 149, 530–537. [Google Scholar] [CrossRef]
- Matsuda, Y.; Morita, M.; Hanada, T.; Kawaguchi, M. A new negative electrode matrix, BC2N, for rechargeable lithium batteries. J. Power Sources 1993, 43, 75–80. [Google Scholar] [CrossRef]
- Keyes, R.W. Physical limits of silicon transistors and circuits. Rep. Prog. Phys. 2005, 68, 2701–2746. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.R. Using cache memory to reduce processor-memory traffic. ACM SIGARCH Comput. Archit. News 1983, 11, 124–131. [Google Scholar] [CrossRef]
- Chircu, A.M.; Kauffman, R.J. Limits to value in electronic commerce-related IT investments. J. Manag. Inf. Syst. 2000, 17, 59–80. [Google Scholar] [CrossRef]
- Goser, K.F.; Pacha, C.; Kanstein, A.; Rossmann, M.L. Aspects of systems and circuits for nanoelectronics. Proc. IEEE 1997, 85, 558–573. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, J.C.; Raliya, R. Nanotechnology; Scientific Publishers: Jodhpur, India, 2012. [Google Scholar]
- Brazhkin, V.; Lyapin, A. Hard and superhard carbon phases synthesised from fullerites under pressure. Сверхтвердые материалы 2012, 6, 75–105. [Google Scholar]
- Welser, J.; Wolf, S.A.; Avouris, P.; Theis, T. Applications: Nanoelectronics and nanomagnetics. In Nanotechnology Research Directions for Societal Needs in 2020; Springer: Dordrecht, The Netherlands, 2011; pp. 375–415. [Google Scholar]
- Koloor, S.S.R.; Rahimian-Koloor, S.M.; Karimzadeh, A.; Hamdi, M.; Petrů, M.; Tamin, M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers 2019, 11, 1435. [Google Scholar] [CrossRef] [Green Version]
- Rahimian-Koloor, S.M.; Moshrefzadeh-Sani, H.; Hashemianzadeh, S.M.; Shokrieh, M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018, 18, 559–566. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: London, UK, 2010; pp. 11–19. [Google Scholar]
- Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S.Y.; Colombo, L.; Bonaccorso, F.; Samorì, P. Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019, 31, 1806663. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Bando, Y.; Sato, T.; Kurashima, K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2002, 12, 1290–1291. [Google Scholar] [CrossRef] [PubMed]
- Chimene, D.; Alge, D.L.; Gaharwar, A.K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Pierret, R.F. Semiconductor Device Fundamentals; Pearson Education India: Noida, India, 1996. [Google Scholar]
- Yoder, M.N. Wide bandgap semiconductor materials and devices. IEEE Trans. Electron Devices 1996, 43, 1633–1636. [Google Scholar] [CrossRef]
- Rani, P.; Jindal, V. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 2013, 3, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, M.S.; Nunes, R.; Azevedo, S.; Chacham, H. Electronic structure and energetics of BxCyNz layered structures. Phys. Rev. B 2006, 73, 073108. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Tang, C.; Zhi, C. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Kawaguchi, M. B/C/N materials based on the graphite network. Adv. Mater. 1997, 9, 615–625. [Google Scholar] [CrossRef]
- Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z.; Storr, K.; Balicas, L. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430. [Google Scholar] [CrossRef]
- Park, C.; Chadi, D. Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B 1997, 55, 12995. [Google Scholar] [CrossRef]
- Liu, A.Y.; Wentzcovitch, R.M.; Cohen, M.L. Atomic arrangement and electronic structure of BC2N. Phys. Rev. B 1989, 39, 1760. [Google Scholar] [CrossRef] [PubMed]
- Terrones, M.; Botello-Méndez, A.R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y.I.; Rodríguez-Macías, F.J.; Elías, A.L.; Munoz-Sandoval, E.; Cano-Márquez, A.G.; Charlier, J.-C. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010, 5, 351–372. [Google Scholar] [CrossRef]
- Yao, B.; Chen, W.; Liu, L.; Ding, B.; Su, W. Amorphous B–C–N semiconductor. J. Appl. Phys. 1998, 84, 1412–1415. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013, 58, 1244–1315. [Google Scholar] [CrossRef]
- Tran, V.T.; Saint-Martin, J.; Dollfus, P.; Volz, S. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 2017, 7, 075212. [Google Scholar] [CrossRef] [Green Version]
- Simão, C.D.; Reparaz, J.S.; Wagner, M.R.; Graczykowski, B.; Kreuzer, M.; Ruiz-Blanco, Y.B.; García, Y.; Malho, J.-M.; Goñi, A.R.; Ahopelto, J.; et al. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydr. Polym. 2015, 126, 40. [Google Scholar] [CrossRef] [Green Version]
- Bena, C.; Montambaux, G. Remarks on the tight-binding model of graphene. New J. Phys. 2009, 11, 095003. [Google Scholar] [CrossRef]
- Papaconstantopoulos, D.A.; Mehl, M.J. The Slater–Koster tight-binding method: A computationally efficient and accurate approach. J. Phys. Condens. Matter 2003, 15, R413. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, M.T.; Razmdideh, A.; Rahimian Koloor, S.S.; Petrů, M. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling. Materials 2020, 13, 1026. https://doi.org/10.3390/ma13051026
Ahmadi MT, Razmdideh A, Rahimian Koloor SS, Petrů M. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling. Materials. 2020; 13(5):1026. https://doi.org/10.3390/ma13051026
Chicago/Turabian StyleAhmadi, Mohammad Taghi, Ahmad Razmdideh, Seyed Saeid Rahimian Koloor, and Michal Petrů. 2020. "Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling" Materials 13, no. 5: 1026. https://doi.org/10.3390/ma13051026
APA StyleAhmadi, M. T., Razmdideh, A., Rahimian Koloor, S. S., & Petrů, M. (2020). Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling. Materials, 13(5), 1026. https://doi.org/10.3390/ma13051026