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Abstract: This work presents a comprehensive study on the effects of the Friction-based Injection
Clinching Joining (F-ICJ) process on the microstructure and local properties of the stake head.
The manuscript evaluates the consequences on the quasi-static mechanical performance of hybrid joints
of amorphous polyetherimide (PEI) with aluminium AA6082. Through an overlay of microhardness
map on a cross-polarized transmitted-light optical microscopy (CP-TLOM) image, two lower-strength
microstructural zones in the PEI stake head were observed: a plastically-deformed zone (PDZ) and a
thermo-mechanically-affected zone (PTMAZ). When compared to the base material, PDZ and PTMAZ
have a reduction of 12%–16% and 8%–12%, respectively, in local mechanical properties. The reduced
local strength was associated with distinct volumes of loosely packed PEI chains with unsteady
chain conformation and thus larger free volume in the affected regions. The mechanical strength
reduction is reversible through physical aging by thermal annealing the joints, which additionally
shows that process-induced thermomechanical degradation of PEI by chain scission, as evidenced by
size exclusion chromatography (SEC) analysis, does not appear to affect local mechanical strength.
An evaluation of typical loading regimes of staked joints in lap shear (average ultimate force of
1419 ± 43 N) and cross tensile (average ultimate force of 430 ± 44 N) testing indicates that the
process-induced changes of PEI do not compromise the global mechanical performance of such a
structure. These findings provide a better understanding of the relationships between processing,
microstructure, and properties for further F-ICJ process optimization.

Keywords: staking; hybrid structures; microstructural change; amorphous polymer; joining

1. Introduction

Lightweight design has been established as one of the most successful strategies for the reduction
of emissions in transport industry. By applying the right material in the right place, it is possible
to obtain a multi-material structure with optimized weight and strength. This approach has driven
research on several new joining methods which are potentially able to assemble these advanced
polymer-metal hybrid structures.

Several staking processes have been developed in recent years. Threaded Hole Friction Spot
Welding (THFSW), based on filling of the pre-threaded metallic hole by melting and re-solidifying
polymer, was used to join AA5052 aluminum to short-carbon-fiber-reinforced polypropylene (PP-SCF)
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composite [1]. The increase of the polymeric melted surface was due to higher rotational speeds,
and therefore, the growth of loading bearing area resulted in higher strength and fracture energy of the
joints. Another technique, named friction filling staking joining (FFSJ), was used to join aluminum and
polypropylene sheets by filling a metallic hole with polymer to create a local stake [2]. The joining
mechanism of FFSJ involves the mechanical interlocking of the formed stake and the partial adhesion of
polymer-metal and polymer-polymer interfaces. FFSJ lap shear joints achieved maximum tensile shear
strength of 13 MPa, which is comparable to state-of-art staking performance. Hahn and Finkeldey [3]
used ultrasonic riveting and hot-air-sticking to join fiber-reinforced thermoplastics to steel. They proved
that hot-air-sticking preserved the fibers better than ultrasonic riveting, resulting in a load-bearing
performance 50%–90% higher.

However, the application of new technologies in demanding industries such as aircraft and automotive
requires a deep comprehension of several aspects of the joints. Manufacturing processes often causes
alterations to the microstructure of materials, which in turn affects the final properties and performance of
the joint. Therefore, not only the mechanical performance and damage tolerance are important investigation
subjects, but also the effects of the process on local material properties. This understanding is essential for
clarifying the influence of the process on joint properties to target joint efficiency.

Although much of the research in this topic has been performed with metallic materials, there is
interest on the behavior of polymer and polymer composites affected by various joining processes.
Simōes and Rodrigues [4] used transmitted-light optical microscopy (TLOM) on thin samples of
polymethymethacrylate (PMMA) friction-stir-welded (FSW) joints to identify its microstructural
zones. TLOM with crossed polarizers (CP-TLOM) has been used to analyze residual stresses through
photoelasticity in joints with transparent polymers. With CP-TLOM, Kiss and Czigány [5] observed
a heat-affected zone (HAZ) defined by molecular orientation and residual stresses in FSW joints
of poly-ethylene-terephtalate-glycol (PETG). In a similar manner, Krishnan et al. [6] analyzed the
flow-induced residual fields in polycarbonate (PC) welded by ultrasonic, hot plate, and vibration
welding. These examples are not only useful for the prediction of the joint’s behavior in service,
but also to improve process development of new technologies.

The effect of these microstructural changes on local properties of the joined materials can be further
investigated by indentation testing (microhardness) [2] and physical–chemical analyses. Indentation testing
has been proven as a powerful method to identify structural changes in polymers [7]. The measured
strength can be related to internal packing of polymeric chains (i.e., free volume) [8,9], whereas features
of the indentations indicate inelastic and elastic contributions of deformation [7,10,11]. A number of
analytical methods such as differential scanning calorimetry (DSC) [12,13], thermogravimetry (TGA) [14],
and size exclusion chromatography (SEC) [15,16] have been used to identify physical–chemical changes
in microstructural zones of joined materials. These combined analyses provide useful insights of the
relationships between process control, microstructural changes, and local properties within the joint area.

This work describes the process-related changes observed in an amorphous engineering
thermoplastic (polyetherimide; PEI) when joined to a metal (aluminum AA6082) by a friction-based
staking process (F-ICJ [17]). The nature of the process-related changes is investigated by microstructural
analyses, local mechanical properties, and physical–chemical properties of the polymer stake
head. It is showed that PEI joined by F-ICJ presents a plastically deformed zone (PDZ) and a
thermo-mechanically-affected zone (PTMAZ) of lower mechanical strength due to more loosely
packed chains that increases the free volume in these regions. Although polymeric thermomechanical
degradation takes place at some processing conditions, it does not seem to affect the mechanical
properties of the joints as the local mechanical properties could be enhanced by annealing.

2. Friction-Based Injection Clinching Joining (F-ICJ)

Friction-based Injection Clinching Joining (F-ICJ) has been recently explored as an alternative advanced
staking process for new lightweight structures by Abibe et al. [17–19]. Typical staked structures use joints
in the most common configurations of rosette, dome, or hollow stakes (Figure 1a) [20]. They provide a
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reliable process for simply attaching dissimilar materials. The strength of these joints comes from the large
stake head, which can be a limitation in exterior or lightweight applications.
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Figure 1. (a) Conventional stake designs for metal-polymer structures; (b) surface view of an F-ICJ
structure; (c) cross-sectional view of an F-ICJ stake. Adapted from [19].

F-ICJ polymer stake heads are flush to the surface of the metal part (Figure 1b). A thermomechanical
process induces polymer flow within a shear layer to form the stake. The mechanical strength of an
F-ICJ joint comes from anchoring of the stake in cavities inside of the through hole, made possible by
the material flow in the shear layer (Figure 1c). This feature allows F-ICJ stakes to be smaller, lighter,
and more aesthetically flexible than standard staking processes [17].

The basic process steps for the F-ICJ welding technique are shown in Figure 2. The thermoplastic and
other joining components are pre-assembled (preferably on a backing plate) and aligned with the moving
axis of the non-consumable tool (Figure 2a). After this positioning step, the rotating tool moves towards the
thermoplastic stud (Figure 2b). The contact between the rotating tool and the stud generates frictional heat
at their interface, gradually softening or melting the polymer, and allowing the tool to penetrate further into
the stud (Figure 2c). The friction heats and deforms the thermoplastic stud, causing softening (or melting)
and flow. Next, tool rotation stops and axial pressure acts further upon the molten polymer, pushing it into
the cavities and shaping the final stake geometry (Figure 2d). The tool remains in this position until the
thermoplastic is cooled (Figure 2e). The tool retreats and the F-ICJ joint is created.
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The fundamentals of the F-ICJ process have been described in [18,19]. Joints are formed by providing
frictional heat to a polymeric stud, which flows within a shear layer around the tool to create a stake.
The stake is cooled down under pressure, avoiding large dimensional recovery. A stop-action procedure
with monitoring of polymer temperature and process-related signals provide insight in the joint formation
mechanisms. Material flow within the shear layer is fundamental for efficient filling of the cavities by the
molten polymer, while also eliminating volumetric flaws. The preliminary investigation on the mechanical
behavior identified the main failure mechanisms of joints in lap-shear and cross-tensile configurations.
The benchmark study showed that F-ICJ is comparable to state-of-the-art ultrasonic staking in terms of
mechanical properties, but needs improvement in cycle time.

3. Materials and Methods

Polymer parts with a stud were machined from 6.35 mm thick extruded polyetherimide plates
(PEI, grade Duratron U1000 PEI, Quadrant Plastics, Lenzburg, Switzerland), as showed schematically
in Figure 3a. The stud base has a radius of 0.3 mm to decrease stress concentration in this region.
Through holes with a chamfer cavity were machined in 2 mm thick aluminum 6082-T6 plates (AA6082,
Aalco Metals Ltd, Halesowen, UK), which fit the stud of the PEI part (Figure 3b). Although other
specimen manufacturing methods can result in better final properties [21–23], conventional machining
is still the most common technique adopted, which were selected here to simulate real conditions.
A non-consumable tool of stainless steel 316L depicted in Figure 2c was used for the F-ICJ process.
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Figure 3. Base materials used. (a) Polyetherimide (PEI) part. (b) Aluminum 6082-T6 part; (c) F-ICJ tool
made of stainless steel 316L.

The pre-assembled parts were joined by F-ICJ using an automated gantry system (model RNA,
H.Loitz-Robotik, Hamburg, Germany) equipped with a high-speed friction welding machine (model
RSM410, Harms + Wende, Hamburg, Germany). The system operates with rotational speeds ranging
from 6000 to 21,000 rpm and axial forces of up to 24 kN. A torque sensor (model 9049, Kistler, Winterthur,
Switzerland) was used to obtain the materials’ torque response. The unified system allows signal
monitoring from rotational speed, axial force, spindle displacement, and torque. The specimens were
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cleaned with pressurized air (PEI) and acetone (AA6082) prior to joining. They were clamped in a
standard sample holder to avoid slippage during joining.

Microstructural analysis of PEI was carried out with a Leica DM IRM optical microscope (Leica
Microsystems, Wetzlar, Germany). Reflected light optical microscopy (RLOM) and transmitted light
optical microscopy (TLOM) were used for general microstructural and material flow observation.
Samples were prepared by cutting the specimens 1 mm from their center and embedding them in
low-temperature epoxy resin. Embedded samples were ground and polished for RLOM analyses
according to the standard materiallographic procedure. For TLOM analyses, thin sections of 1 mm
thickness were cut from embedded samples and subsequently had both sides polished.

Qualitative evaluation of residual stresses in the PEI part after joining was performed using
transmitted optical microscopy with crossed polarizers (CP-TLOM) on 1 mm thick section samples.
The light source was a standard microscope filament lamp producing a continuous white light spectrum.
The observed image produces a colored fringe pattern, in which each isochromatic corresponds to a
local stress level caused by F-ICJ. A grayscale image of this pattern can qualitatively indicate the stress
levels. In this study, the zero-order fringes were identified in color images as the non-stressed regions,
then the grayscale images were used to interpret the local stresses and its dependence on the F-ICJ
process parameters. Typical colored and grayscale fringe patterns and zero-order fringe identification
of the PEI base material are showed in Figure 4.
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Local mechanical properties of PEI were measured on embedded and polished cross sections of
joints. Zwick ZHV (Zwick Roell, Ulm, Germany) equipment was used with an indentation load of
0.495 N over 15 s, and distance between indentations of 200 µm. The testing procedures are based on
the ASTM E384 [24].

Changes in molecular weight distribution (MWD) of PEI were evaluated by size exclusion
chromatography (SEC) with a HT-GPC equipment (Viscotek, Berkshire, UK) using HT-806 M columns
coupled to a refractive index detector. Samples of PEI were removed with a scalpel from the PTMAZ
of each specimen, and dissolved in trichlorobenzene (TCB) in a heated bath at 150 ◦C for 10 min
at concentration of 2 mg L−1. The analyses were performed using 200 µL of PEI/TCB solution at
150 ◦C and flow rate of 1 mL min−1. The calibration curve was built using monodisperse polystyrene
standards with molecular weights between 845 and 1,900,000 g mol−1.
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The energy input provided by each set of F-ICJ process parameters was calculated to establish
a correlation with physical–chemical changes in the PEI. Mechanical work is commonly used to
estimate energy input in friction welding processes [25,26]. Equation (1)) calculates mechanical work
as the energy input Ework for the F-ICJ process. The frictional contribution E f can be described by the
product of the average angular velocity ω and the integral of the torque M over the frictional time
FT. The deformational contribution Ed is calculated by the product of the frictional force FF and the
integral of the tool displacement rate υ over FT.

Ework = E f + Ed = ω

∫ FT

t0

M dt + FF
∫ FT

t0

υ dt = Mtotalω+ FF ∆x [J] (1)

Both constants FF and ω are calculated from the experimental curves. The tool displacement ∆x
is the result of the integral of the tool displacement rate υ over time. Within the parameter sets used in
this work, the deformational component FF ∆x contributed with a maximum of 10 J to energy input,
amounting to less than 1% of total energy input. For simplification, only the rotational component
Mtotalω was used in this work. The total torque Mtotal is experimentally obtained from the torque
curves of the friction phase (stud meltdown and dwell time stages).

4. Results and Discussion

4.1. Overview of the Microstructure of the Polymeric Stud

A typical F-ICJ joint results from the effect of heating and deformation imposed by rotational and
axial movement of the tool in contact with the polymeric stud. Its microstructure is highly influenced
by heat input, which in turn depends on the tool geometry and process parameters. The cross-section
of such a PEI-aluminum F-ICJ joint is shown in Figure 5, with details of its microstructural zones and
joint features. This joint was produced with the set of parameters shown in Table 1.
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For processing conditions see Table 1. Adapted from [19].
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Table 1. Parameters set used for Friction-based Injection Clinching Joining (F-ICJ) joint production.
Ework= 1415 ± 7 J.

Phase Duration [ms] Rotational Speed [rpm] Axial Force [N]

Stud meltdown 765 7472 2551
Dwell time 1812 7018 2551

Consolidation 5000 0 5363

The use of transmitted-light optical microscopy (TLOM) through a thin section of an F-ICJ joint
makes it possible to observe the microstructural features and discontinuities in the polymer. A dark line
across the diameter of the stake shaft delineates a polymer-polymer interface (Figure 5b). The volume
above this interface interacted with the frictional surfaces of the conical-pin tool, and was heated and
deformed by its rotation and axial force. This interface is the border of the shear layer displayed in
Figure 1c. This is a polymer thermo-mechanically-affected zone (PTMAZ), which is characterized by
material flow and the presence of volumetric discontinuities such as pores and remnant weld lines
(Figure 5c).

To better visualize the microstructural zones and understand their local properties, further
characterization methods were performed. The right-hand side of Figure 6 presents a micrograph of
the joint from Figure 5 by transmitted-light optical microscopy with crossed polarizers (CP-TLOM)
that displays birefringence patterns. To complement the analysis and help to understand possible
changes in the local mechanical properties of the polymer, a microhardness map of the joint
produced with the same joining condition is overlaid on the left-hand side of Figure 6. The coupled
analysis reveals three microstructural zones with different local mechanical properties: a polymer
thermo-mechanically-affected zone (PTMAZ), a plastically deformed zone (PDZ), and unaffected base
material (BM). At this resolution of the microhardness map (200 µm between indentations), no sharp
transition zone between the PTMAZ and the BM can be identified that would otherwise characterize
an extensive polymer heat-affected zone (PHAZ).
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Figure 6. Overlay of a microhardness map (left) on a CP-TLOM micrograph of the PEI-aluminum F-ICJ
joint from Figure 5. Dotted lines are the boundaries of the polymer thermo-mechanically-affected zone
(PTMAZ); dashed lines are the boundaries of the plastically deformed zone (PDZ). Base material (BM)
was labeled for the unaffected PEI region. For processing conditions see Table 1. Adapted from [19].

4.2. Microstructural Zones and Interfaces at the Polymeric Stud

4.2.1. Plastically Deformed Zone (PDZ) and Base Material (BM)

Beneath the shear layer boundary of the PTMAZ (dotted line in Figure 6), two zones can be
identified. The highest-strength volume BM has base material properties and is not affected by the
process. The lowest-strength PDZ (boundaries marked by a dashed line in Figure 6) is directly below
the conical pin’s line of action, and has 12%–16% less local strength compared to the base material.
This region displays no signals of material flow as seen in the PTMAZ, indicating that the temperature
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of this volume is not significantly altered by the rotating action of the tool, so that this volume remains
in a glassy state during processing. A well-formed PDZ is only observed for F-ICJ processing conditions
where the axial joining force is notably high (above 2400 N) [19], creating stresses above the yielding
point of the solid polymer; therefore it follows that the PDZ is plastically deformed by compression.

PEI undergoes strain softening under compression in the 7%–13% strain range [27], as shown
schematically in Figure 7a. Strain softening in polymer glasses is related to the difference in conditions
(energy or stresses) required to initiate yielding and to propagate it [28]. In the case of the polymer in the
PDZ, its mechanical history owing to F-ICJ can be schematically represented by the solid stress-strain
curve in Figure 7b. The polymer in the PDZ is stressed up to a point in the strain softening region,
and after removal of load a residual plastic strain εplastic is present. When reloading a previously
yielded amorphous polymer during the microhardness test (dotted curve in Figure 7b), a new lower
yielding stress is reached (σy−PDZ), because the necessary conditions for initiation of yielding were
previously achieved (σy−BM). A peak of yielding stress is usually still present, due to a certain level of
physical aging (hardening as a result of the reduction of free volume at temperatures close to but below
the glass-transition (Tg)) during cooling or at room temperature. Plastic deformation by yielding is
described as conformational changes of the chains, leading to increased free volume in amorphous
polymers [28–31], which is detected as reduced hardness in indentation testing [8,9].
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Figure 7. (a) Behavior of PEI under uniaxial compression (based on [27,32]). (b) Yielding of PEI up
to strain softening (solid curve), and reloading the yielded PEI during microhardness (dotted curve).
Adapted from [19].

Identification of the shape and limits of the PDZ can be additionally supported by the birefringence
pattern with crossed polarizers. Birefringence patterns are associated with the residual stresses in a
material through the stress-optic law (Equation (2) [33]).

σres = (σ1 − σ2) = (n1 − n2) Copt =
δ
y

Copt [MPa] (2)

where σres is the residual stress, (σ1 − σ2) is the difference in normal stresses in the specimen, (n1 − n2)

is the birefringence, Copt is the stress-optical coefficient of the material, δ is the retardation of light in
the specimen, and y is the specimen thickness. Photoelasticity [34] can be used to quantify stresses in
birefringence patterns by defining these parameters. However, a quantitative measurement of residual
stresses through the photoelastic effect requires adequate equipment and complex analyses [35,36],
which were not within the scope of this work. Such analyses can be performed more commonly using
a color image and obtaining the intensity of the red–green–blue signals, or by using a Michel–Levy
chart. These methods assist in the definition of the number of fringes in a certain region, which
are a measurement of the retardation δ [37]. In this work a grayscale image filtered from the red
signal was used to qualitatively estimate the number of fringes in a given region of the polymer joint.
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An increasing number of fringes (larger retardation δ) can be associated with an increasing level of
residual stresses (see Equation (2)) [33].

Figure 8a is one half of the cross-section previously presented in Figure 6; the transition region
between the PDZ and BM zones is highlighted with a black rectangle. This highlighted region is shown
in greater detail in Figure 8b. In this image, a first-order fringe is on the right-hand side, and increasing
orders of isochromatic fringes can be observed towards the PDZ on the left of the figure. The brighter,
well-defined fringes in the base material region are low-order fringes, indicating lower stresses, while
the lighter shades in the PDZ are high-order fringes, associated with high residual stresses [35,38].
The high-order fringes correspond to higher retardation (δ) values, which indicate higher residual
stresses, as described in Equation (2). Therefore, yielding in the PDZ creates a highly-stressed volume,
whereas away from the PDZ and into the BM the fringe orders are of the same level as observed in the
as-received material (Figure 4) where no significant residual stresses are present.
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Figure 8. (a) Half of a cross-sectional view of a PEI-aluminum F-ICJ joint featuring a PDZ.
(b) Birefringence of the PDZ-BM transition highlighted in (a), with number of fringes (−σres ) increasing
in the PDZ direction (CP-TLOM). (c) Indentation profile highlighted in (b), showing the formation of a
strengthened transition zone (STZ) between the PDZ and BM. The gray horizontal lines in (c) correspond
to the PEI base material’s hardness. For processing conditions see Table 1. Adapted from [19].

It can be also observed in Figure 8c that local mechanical strength—represented by microhardness
values—is decreased at the PDZ. The black dots in Figure 8b represent the position of the indentations
of the profile shown in Figure 8c, covering the transition between PDZ and BM. The horizontal gray
lines in Figure 8c indicate the as-received hardness of PEI and its standard deviation, and the black
disks are the indentation measurements of the profile. It is possible to see that a strengthened transition
zone (STZ) was detected between the BM and PDZ. It is known that compressive stresses increase
hardness values [10,11], whereas plastic deformation decrease them [7,8]. Therefore, there are two
competing effects taking place in the STZ. The combined analysis demonstrates that in the PDZ and
STZ significant compressive residual stresses (−σres) are present, but in the PDZ the effect of free volume
increasing because of yielding dominates and hardness is lower, whereas in the STZ no yielding is
present and the −σres increases hardness. In the BM, none of these effects play a role and the hardness
values are in the range of the as-received material.

4.2.2. Polymer Thermo-Mechanically-Affected Zone (PTMAZ)

Following the polymer–polymer interface line in Figure 5b, the volume previously described as
the PTMAZ presents 8%–12% lower strength (as shown in the hardness map of Figure 6) than the
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base material. The PTMAZ corresponds to the shear layer described in Figure 1c. This is a polymer
volume that is affected by frictional heat and shear stresses, and changes in local properties are related
to the thermomechanical processing and its subsequent thermal history in service. Unlike the PDZ,
no effects of yielding below Tg are seen, because this volume is above the Tg of polymer during
processing. Competing phenomena may act in this volume to change its microhardness: topological
changes affecting internal order, and molecular weight changes [7]. Conformational chain changes
that alter entanglement density occur from quenching (increasing free volume) or physical aging
(reducing free volume). Lower hardness in this case indicates larger free volume [8,9,39]. Reduction of
molecular weight by chain scission tends to reduce microhardness, because a larger fraction of chains
with low molecular weight represent more chain ends and degradation products [40]. By contrast,
thermally-induced crosslinking increases local strength as a result of a rigid network with lower free
volume [7]. A combination of entanglement density and molecular weight reduction is probably
associated with microhardness reduction in the PTMAZ.

Chain entanglement density in PEI at the stake head of F-ICJ joints is related to the available energy
for chain diffusion at the end of the friction phase. During the friction phase, the PTMAZ reaches
temperatures (up to 385 ◦C) far above the Tg of PEI (215 ◦C), and it cools down rapidly (≈35 ◦C·s−1)
during consolidation [19]. At the end of the consolidation phase the polymer is well below Tg in a
glassy state [33]; this does not allow the chains to achieve a densely packed conformation, and therefore
reduces the local strength compared to the as-received polymer [9,32]. This indicates that the cooling
regime in the PTMAZ is probably faster than for the manufacturing process of the as-received material.
The extruded thick PEI sheets either use slow cooling after exiting the die, or are annealed after
extrusion to achieve a relaxed chain conformation [41]. Either way the industrial process allows the
polymer chains to achieve a more packed chain conformation than the as-joined PTMAZ. The local
mechanical properties of PTMAZ are also lower than its base material due to physical–chemical effects
in FFSJ joints [2].

4.3. Physical–Chemical Changes in the Microstructural Zones of F-ICJ Joints

To investigate if a certain level of degradation is present, physical–chemical properties related to
chain length were studied. The hypothesis of PEI degradation caused by F-ICJ stated in the previous
sections is proven in Figure 9 with measurements of molecular weight distribution (MWD) through
SEC. The MWD for the base material is shown along with the MWD from the PTMAZ of joints with
different levels of energy input Ework. A trend of lowering the average molecular weight (Mn and Mw)
and increasing of the polydispersity (Mw/Mn) towards higher energy input levels can be observed.
This trend is an indication that the temperature and shear rate imposed by the F-ICJ process are high
enough to cause thermomechanical degradation of PEI through chain scission [42]. Previous work by
Sônego [42] showed that breakage of the imide and ether bonds cause multiple non-random chain
scission, resulting in a considerable increase in the fraction of low-molecular-weight chains.

In the previous discussion, it has been shown that microstructural changes in PEI joined by F-ICJ
decrease local strength in the PTMAZ and PDZ (Figure 6) and created residual stress gradients around
the PDZ (Figure 8). To verify the assumption of increased free volume in the PDZ, and whether changes
to the molecular weight also affect the local strength in the PTMAZ, a replicate of the high-energy-input
joint from Figure 9 was subsequently annealed for 24 h at 200 ◦C (Tg—15 ◦C). The time and temperature
of annealing were based on the maximized physical aging of PEI as reported by Belana et al. [43].
Annealing of amorphous polymers promotes accelerated physical aging. Through this annealing
procedure the majority of free-volume effects on mechanical strength is removed [29,39], therefore
making the effects of lower molecular weight on PEI joined by F-ICJ visible.
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A cross-section of the joint showing the indentation positions prior to and after thermal aging are
showed in Figure 10a. Five vertical profiles were executed before aging (black lines); and after aging
five further profiles (blue lines) were indented between the previous ones. Local mechanical strength
distribution is showed for the as-joined joint in Figure 10b and for the aged joint in Figure 10c.

The microhardness distribution for the as-joined PEI shows clear boundaries for the typical
low-strength PTMAZ and PDZ of an F-ICJ joint. After annealing no microstructural zones can
be distinguished. A region of lower strength is observed below the keyhole, corresponding
to non-process-related cracks which develop during annealing (Figure 10d). Average measured
microhardness was 235.0 ± 6.2 MPa across the annealed joint. The homogeneity of local mechanical
properties over the joint indicates that any differences between the base material and PTMAZ or PDZ
in the as-joined specimen were due to an unsteady chain conformation with increased free volume.
Although thermomechanical degradation was present at the PTMAZ of this joint (high energy input,
Figure 9), no noticeable difference in local strength can be measured after accelerated physical aging.
Therefore, thermal annealing after F-ICJ process can enhance the local mechanical properties of joints,
similar to ball-burnishing in the friction stir welding process [44,45].
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4.4. Effect of the PTMAZ on the Joint Mechanical Behavior

It is of interest to correlate significant microstructural changes in a joint with the expected
mechanical behavior of the structure in service. The mechanical behavior of staked joints is commonly
tested through lap-shear and cross-tensile configurations. These tests simulate typical stresses in
rivet-like assemblies.

Lap shear tests are carried out in overlap specimens as depicted in Figure 11a. The lap shear
joints had an average ultimate force of 1419 ± 43 N. In a metal-polymer configuration, the metallic part
transfers the load to the stake shaft, practically shearing it from the polymer base plate. The distinct
stiffness of the materials creates a secondary bending moment during this test, which generates the
forces acting as drawn in Figure 11b. The secondary bending forces the rotation of the stake head as
represented by the torque M. As a result, from M and F, the metal plate transfers load to the polymer
in the form of FM and FF. These forces, along with the reaction forces of the polymer part FN1 and FN2,
create the stress field showed in Figure 11b, as seen by FEM simulation of F-ICJ PEI/AA6082-T6 joints.
Compressive stresses are present on the stake shaft, while high-magnitude tensile stresses arise on the
stake base. Lower-magnitude tensile stresses are present on the stake head at the opposite side, as a
result from the secondary bending effect. The high tensile stresses on the stake base lead to a failure
of the base plate as showed in Figure 11c. A detailed description of the failure mode was described
in [19]. Summarizing, the load is supported at the marked regions both by the stake head (red circle)
and the stake base (blue circle). The stake head contributes to diminish the secondary bending effect.
As the secondary bending intensifies, the stake head stops supporting the load, and a main crack at the
stake base grows rapidly leading to a catastrophic failure.
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Figure 11. (a) Specimen and forces configuration for lap shear tests. (b) Stress concentration regions in
an F-ICJ joint during lap shear tests. (c) Typical failure mode of F-ICJ lap shear specimens.

A correlation can be established with the as-joined microstructure of an F-ICJ joint. At the stake
base, where the final crack grows, there were no microstructural changes due to the joining process.
This region’s resistance to failure can mainly be improved by geometrical design. On the other hand,
the stake head region is the PTMAZ, with lower local mechanical strength. The stake head crack grows
through this volume, and the crack growth is influenced by its properties and features. For instance,
extreme levels of thermal–mechanical degradation may reduce PTMAZ strength to a point where the
crack growth is facilitated. The presence of pores (Figure 5c) allows for a shorter crack growth path,
accelerating the failure. Therefore, optimizing the microstructure and properties of the PTMAZ can
increase the reliability of staked structures by halting the initial failure mechanisms.

Cross-tensile tests use an overlap specimen as shown schematically in Figure 12a. The joints had
an average ultimate force of 430 ± 44 N in this test configuration. The metal plate is fixed, while the
polymer plate is pulled away. This induces a tensile stress on the stake. Figure 12b shows the stress
concentrations through FEM for a PEI-aluminum joint during cross tensile testing. Pulling down the
polymeric plate creates a bending moment on the plate, which results in tensile stresses at the stake
base. No significant stresses were observed at the stake head itself, showing that the PTMAZ is not
bearing loads in such a configuration. Such a stress distribution leads most frequently to a failure by
base-plate bending, where cracks nucleate at the stake base and grow rapidly towards the base plate’s
lower surface (Figure 12c). The stake head is not damaged in such a failure mode. Differently from
fastener staking [46], THFSW [1], and FFSJ [2] joints, the joining mechanism of F-ICJ does not depend
on polymer-metal adhesion, as it relies mostly on the mechanical interlocking of the components.
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Typically, the lower strength and degradation of the PTMAZ will not influence the reliability of
assemblies suffering loads as from cross tensile test. The base plate bending failure is a function of the
base material’s properties and mechanical design of the polymeric part. However, in some cases foreign
particles in the PTMAZ have been shown to nucleate cracks at the stake head during cross tensile
tests [19]. The growth of these cracks is facilitated by the presence of pores, whose relative volume in
the stake head increases with increasing energy input [19]. Therefore, it is generally advantageous
to optimize the process using reduced energy input and a clean production. As shown in Figures 10
and 11, the main crack in F-ICJ joints propagates through the polymeric base plate. Such behavior was
also found in FFSJ joints [2]. Although the stud base was machined with a radius of 0.3 mm to avoid
stress concentration, other geometries may have a better effect on the joint failure mode and should be
investigated in the future.

5. Conclusions

• The joining of polyetherimide (PEI) amorphous engineering thermoplastic to aluminum alloy
through the new F-ICJ staking joining process was presented. A comprehensive study on the
effects of processing on the microstructure and local properties was carried out through light
optical microscopy, microhardness testing, and size exclusion chromatography techniques.

• An analysis through qualitative transmitted-light optical microscopy combined with quantitative
microhardness testing allowed to identify and clearly delimitate two microstructural zones in
the stake head of PEI: a thermo-mechanically-affected zone (PTMAZ) and a plastically-deformed
zone (PDZ).

• The PTMAZ, a polymer layer below the keyhole that was molten and sheared by the action the
stirring tool at temperatures up to 385 ◦C well above the Tg of PEI (215 ◦C), and quickly cooled
(≈35 ◦C s−1) afterwards, presented an 8%–12% reduction in the microhardness values compared
to the base material (BM), as well as a few volumetric defects. This zone was characterized
by a distinct birefringence pattern, as revealed by cross-polarized transmitted-light optical
microscopy (CP-TLOM) analysis, resulting from thermomechanically-induced residual stresses.
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Furthermore, thermomechanical degradation of PEI by chain scission was identified through size
exclusion chromatography (SEC) analysis.

• The PDZ, a polymer volume beneath the PTMAZ boundary that underwent strain softening as a
consequence of developed compressive stresses resulting from F-ICJ, showed a 12%–16% reduction
in the microhardness values and a different birefringence pattern. The boundary between the
PDZ and the base material (BM) was characterized by the difference in the number of fringes
presented in the CP-TLOM image.

• A post-joining annealing treatment eliminated residual stresses in the PTMAZ and PDZ, as a
consequence of physical ageing of PEI. This helped to identify the nature of the above-mentioned
microstructural local changes as distinct volumes of loosely packed PEI chains with unsteady
chain conformation and thus larger free volume, which in turn reduced microhardness values.
Although thermomechanical degradation of PEI on the staked head was evidenced by SEC,
it seems not to contribute to the reduction in joint global mechanical strength.

• The consequences of the microstructural changes and thermal degradation of PEI on the global
mechanical properties of staked joints were evaluated in terms of typical mechanical loading in
lap shear (average ultimate force of 1419 ± 43 N) and cross tensile (average ultimate force of 430 ±
44 N) testing. Neither of the loading situations rely largely on the PDZ and PTMAZ, therefore the
process-induced local strength reduction and PEI degradation by chain scission in the stake head
do not compromise global mechanical properties of staked PEI-aluminum joints.

These findings extend the understanding of the relationships between processing, microstructure,
and properties, as well as provide the basis for further F-ICJ process optimization.
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