Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Powder Mixture Preparation
2.3. LAS-GO Powders Microwave Sintering
2.4. Characterization Methods
2.4.1. Carbon Content Measurement
2.4.2. Raman Characterization
2.4.3. Density Measurements
2.4.4. Mechanical Characterization
2.4.5. Morphology, Thermal and Electrical Characterization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xia, L.; Wen, G.; Song, L.; Wang, X. The crystallization behavior and thermal expansion properties of β-eucryptite prepared by sol–gel route. Mater. Chem. Phys. 2010, 119, 495–498. [Google Scholar] [CrossRef]
- Beall, G.H.; Pinckney, L.R. Nanophase Glass-Ceramics. J. Am. Ceram. Soc. 2004, 82, 5–16. [Google Scholar] [CrossRef]
- Abdel-Fattah, W.; Abdellah, R. Lithia porcelains as promising breeder candidates—I. Preparation and characterization of β-eucryptite and β-spodumene porcelain. Ceram. Int. 1997, 23, 463–469. [Google Scholar] [CrossRef]
- Sheu, G.-J.; Chen, J.-C.; Shiu, J.-Y.; Hu, C. Synthesis of negative thermal expansion TiO2-doped LAS substrates. Scr. Mater. 2005, 53, 577–580. [Google Scholar] [CrossRef]
- Abdel-Fattah, W.I.; Ali, F.M.; Abdellah, R. Lithia porcelains as promising breeder candidates—II. Structural changes induced by fast neutron irradiation. Ceram. Int. 1997, 23, 471–481. [Google Scholar] [CrossRef]
- Moreno, O.G.; Fernández, A.; Khainakov, S.; Torrecillas, R. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scr. Mater. 2010, 63, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Benavente, R.; Borrell, A.; Salvador, M.D.; Moreno, O.G.; Penaranda-Foix, F.; Catalá-Civera, J.M. Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering. Ceram. Int. 2014, 40, 935–941. [Google Scholar] [CrossRef]
- Benavente, R.; Salvador, M.D.; Moreno, O.G.; Penaranda-Foix, F.; Catalá-Civera, J.M.; Borrell, A. Microwave, Spark Plasma and Conventional Sintering to Obtain Controlled Thermal Expansion β-Eucryptite Materials. Int. J. Appl. Ceram. Technol. 2014, 12, E187–E193. [Google Scholar] [CrossRef] [Green Version]
- Moreno, O.G.; Borrell, A.; Bittmann, B.; Fernández, A.; Torrecillas, R. Alumina reinforced eucryptite ceramics: Very low thermal expansion material with improved mechanical properties. J. Eur. Ceram. Soc. 2011, 31, 1641–1648. [Google Scholar] [CrossRef] [Green Version]
- Moreno, O.G.; Fernández, A.; Torrecillas, R. Conventional sintering of LAS–SiC nanocomposites with very low thermal expansion coefficient. J. Eur. Ceram. Soc. 2010, 30, 3219–3225. [Google Scholar] [CrossRef] [Green Version]
- Benavente, R.; Salvador, M.D.; Penaranda-Foix, F.; Moreno, O.G.; Borrell, A. High thermal stability of microwave sintered low-εr β-eucryptite materials. Ceram. Int. 2015, 41, 13817–13822. [Google Scholar] [CrossRef]
- Borrell, A.; Moreno, O.G.; Torrecillas, R.; Rocha, V.G.; Fernández, A. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials. Sci. Technol. Adv. Mater. 2012, 13, 15007. [Google Scholar] [CrossRef] [PubMed]
- Benavente, R.; Salvador, M.; Penaranda-Foix, F.; Pallone, E.M.D.J.A.; Borrell, A.; Penaranda-Foix, F. Mechanical properties and microstructural evolution of alumina–zirconia nanocomposites by microwave sintering. Ceram. Int. 2014, 40, 11291–11297. [Google Scholar] [CrossRef]
- Ebadzadeh, T.; Valefi, M. Microwave-assisted sintering of zircon. J. Alloy. Compd. 2008, 448, 246–249. [Google Scholar] [CrossRef]
- Cheng, J.; Agrawal, D.; Zhang, Y.; Roy, R. Microwave sintering of transparent alumina. Mater. Lett. 2002, 56, 587–592. [Google Scholar] [CrossRef]
- Borrell, A.; Salvador, M.D.; Rayón, E.; Penaranda-Foix, F. Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques. Ceram. Int. 2012, 38, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Menendez, J.B.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, S.; Basak, T.; Srinivasan, R. Microwave heating characteristics of graphite based powder mixtures. Int. Commun. Heat Mass Transf. 2013, 48, 22–27. [Google Scholar] [CrossRef]
- Centeno, A.; Rocha, V.G.; Alonso, B.; Fernández, A.; Gutierrez-Gonzalez, C.; Torrecillas, R.; Zurutuza, A. Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 2013, 33, 3201–3210. [Google Scholar] [CrossRef]
- Porwal, H.; Grasso, S.; Reece, M.J. Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 2013, 112, 443–454. [Google Scholar] [CrossRef]
- Curtin, W.; Sheldon, B.W. CNT-reinforced ceramics and metals. Mater. Today 2004, 7, 44–49. [Google Scholar] [CrossRef]
- Borrell, A.; Rocha, V.G.; Torrecillas, R.; Fernández, A. Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Compos. Sci. Technol. 2011, 71, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.-Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Liu, M.; Chen, C.; Hu, J.; Wu, X.; Wang, X. Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt(II) Removal. J. Phys. Chem. C 2011, 115, 25234–25240. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Cátala-Civera, J.M.; Canós, A.; Plaza-González, P.; Gutiérrez-Cano, J.D.; García-Baños, B.; Penaranda-Foix, F.L. Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Trans. Microw. Theory Tech. 2015, 63, 2905–2914. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Standard Test Methods for Determining Average Grain Size; ASTM E112-13; ASTM Int.: West Conshohocken, PA, USA, 2013; pp. 1–28.
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Esteban, S.; Gutierrez-Gonzalez, C.; Mata-Osoro, G.; Pecharromán, C.; Diaz, L.; Torrecillas, R.; Moya, J.S.; Gutierrez-Gonzalez, C. Electrical discharge machining of ceramic/semiconductor/metal nanocomposites. Scr. Mater. 2010, 63, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Hanaoka, D.; Fukuzawa, Y.; Ramírez, C.; Miranzo, P.; Osendi, M.I.; Belmonte, M. Electrical Discharge Machining of Ceramic/Carbon Nanostructure Composites. Procedia CIRP 2013, 6, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Kozak, J.; Rajurkar, K.P.; Chandarana, N. Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J. Mater. Process. Technol. 2004, 149, 266–271. [Google Scholar] [CrossRef]
- Al-Hartomy, O.A.; Al-Ghamdi, A.A.; Al-Salamy, F.; Dishovsky, N.; Shtarkova, R.; Iliev, V.; El-Tantawy, F. Dielectric and Microwave Properties of Graphene Nanoplatelets/Carbon Black Filled Natural Rubber Composites. Int. J. Mater. Chem. 2012, 2, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Yankowitz, M.; Wang, J.I.-J.; Birdwell, A.G.; Chen, Y.-A.; Watanabe, K.; Taniguchi, T.; Jacquod, P.; San-Jose, P.; Jarillo-Herrero, P.; Leroy, B.J. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 2014, 13, 786–789. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Qin, R.; Zhou, J.; Quhe, R.; Zheng, J.; Fei, R.; Li, H.; Zheng, Q.; Gao, Z.; Lu, J. Electric-Field-Induced Energy Gap in Few-Layer Graphene. J. Phys. Chem. C 2011, 115, 9458–9464. [Google Scholar] [CrossRef]
- Wu, B.-R. Field modulation of the electronic structure of trilayer graphene. Appl. Phys. Lett. 2011, 98, 263107. [Google Scholar] [CrossRef]
- Su, Y.; Wei, H.; Gao, R.; Yang, Z.; Zhang, J.; Zhong, Z.; Zhang, Y. Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon 2012, 50, 2804–2809. [Google Scholar] [CrossRef]
Material | Microwave Sintering Temperature (°C) | Electrical Resistivity (Ω·cm) |
---|---|---|
LAS | 1200 | >108 |
1250 | >108 | |
LAS + 0.5 wt % rG | 1200 | 1.1 ± 0.5·104 |
1250 | 8.7 ± 0.9·103 | |
LAS + 1 wt % rG | 1200 | 4.3 ± 0.5 |
1250 | 3.5 ± 0.7 |
Material | Microwave Sintering Temperature (°C) | Relative Density (%) |
---|---|---|
LAS | 1200 | 99.1 ± 0.4 |
1250 | 99.2 ± 0.4 | |
LAS + 0.5 wt % rG | 1200 | 92.5 ± 0.4 |
1250 | 95.1 ± 0.3 | |
LAS + 1.0 wt % rG | 1200 | 91.9 ± 0.5 |
1250 | 94.2 ± 0.4 |
Material | Microwave Sintering Temperature (°C) | CTE −150 +450 °C (10−6·K−1) |
---|---|---|
LAS | 1200 | −1.4 ± 0.9 |
1250 | −1.2 ± 1.2 | |
LAS + 0.5 wt % rG | 1200 | −0.9 ± 0.8 |
1250 | −0.9 ± 0.9 | |
LAS + 1 wt % rG | 1200 | −0.8 ± 0.7 |
1250 | −1.4 ± 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavente, R.; Salvador, M.D.; Centeno, A.; Alonso, B.; Zurutuza, A.; Borrell, A. Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites. Materials 2020, 13, 1119. https://doi.org/10.3390/ma13051119
Benavente R, Salvador MD, Centeno A, Alonso B, Zurutuza A, Borrell A. Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites. Materials. 2020; 13(5):1119. https://doi.org/10.3390/ma13051119
Chicago/Turabian StyleBenavente, Rut, María Dolores Salvador, Alba Centeno, Beatriz Alonso, Amaia Zurutuza, and Amparo Borrell. 2020. "Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites" Materials 13, no. 5: 1119. https://doi.org/10.3390/ma13051119
APA StyleBenavente, R., Salvador, M. D., Centeno, A., Alonso, B., Zurutuza, A., & Borrell, A. (2020). Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites. Materials, 13(5), 1119. https://doi.org/10.3390/ma13051119