Lightweight Concrete—From Basics to Innovations
Abstract
:1. Introduction
2. Description of Lightweight Aggregate and Lightweight Concrete
2.1. Lightweight Aggregate
2.2. Lightweight Concrete
3. Constituents, Mix Design and Production of Lightweight Concrete
3.1. Other Constituents in Lightweight Concrete than LWA
3.1.1. Normal Aggregate
3.1.2. Binder Materials
3.1.3. Water
3.1.4. Admixtures
3.2. Producing LC
3.2.1. Mix Design of LC
3.2.2. Mixing and Delivery of LC
3.2.3. Placing and Handling of LC
3.3. Mixing and Delivery of ILC
4. Microstructure of LC and Resulting Consequences
4.1. Interface between LWA and Matrix
- The LWA absorbs water during mixing. Together with the mixing water, parts of the binder components infiltrate the porous LWA. The hydration products therefore do not only grow towards the outer LWA surface, but also to a limited extent towards the inside of the LWA (Figure 4). The resulting increase in particle strength is associated with an increase in bulk density and a loss of binder component in the matrix. The intrusion of binder components into the LWA provides an advantage, but it is more economical to keep them in the matrix [83].
- Some expanded clays exhibit reactive clinker phases, such as Gehlenite (C2AS), on the outer shell of the coarse aggregate. These LWA can therefore react with the binder components to a limited extent [84]. With regard to reactive LWA surfaces, there is greater research interest in the impact of cold-bound aggregates [85] as mentioned above (see Section 2.1), as well as in LWA synthesized by cementing and geopolymerization [86].
- The LWA surface is rough and porous and permits very good mechanical interlocking [29].
4.2. Load-bearing Behavior of LC
4.3. Conversion Factors for LC
4.3.1. Conversion Factors for Different Specimen Sizes and Shapes
4.3.2. Conversion Factors for Different Curing Conditions
5. Application Areas of LC and ILC Depending on Strength, Density and Thermal Conductivity
5.1. Application Areas of LC
- A concrete dry density in the range between 1.3 and 1.6 kg/dm3 is aimed for highly stressed facades of office buildings with many and wide window and door openings. They demand for a higher compressive strength in combination with a reduced thermal conductivity of the LC.
- Less stressed facades with higher requirements regarding thermal insulation are built with LC densities in the range between 1.0 and 1.3 kg/dm3. These walls often have a thickness of 50 cm in order to fulfill legal requirements regarding building physics.
- The third field of LC with a dry density < 1.0 kg/dm³ represents the most innovative part these days in central Europe. These very light LC offer the best thermal insulation for monolithic concrete and are increasingly used for exclusive private houses. The architect Gartmann developed a fair faced LC for the monolithic exterior walls of his private house [136]. His idea has been adopted by other architects and developed further by concrete technologists. Since the thermal insulation requirements demand rather thick walls, the achievable strength usually provides sufficient load bearing capacity for single- or two-story houses.
5.2. Extending the Application Area of ILC
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamprecht, H.-O. Opus Caementitium: Bautechnik der Römer, 5th ed.; Beton-Verlag GmbH: Düsseldorf, Germany, 1996; p. 264. ISBN 3-7640-0350-2. [Google Scholar]
- Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete, 1st ed.; Noyes Publications: Norwich, UK, 2002; p. 450. ISBN 978-0815514862. [Google Scholar]
- Expanded Clay and Slate Institute. Lightweight Concrete History Applications Economics; Expanded Clay and Slate Institute (ESCSI): Salt Lake City, UT, USA, 1971. [Google Scholar]
- Holm, T.A. Performance ol Structural Lightweight Concrete in a Marine Environment. In Proceedings of the Performance of Concrete in Marine Environments, St. New Brunswick, NB, Canada, 1 August 1980; pp. 589–608. [Google Scholar]
- Raithby, K.D.; Lydon, F.D. Lightweight concrete in highway bridges. Int. J. Cem. Compos. Lightweight Concr. 1981, 3, 133–146. [Google Scholar] [CrossRef]
- Thienel, K.-C.; Peck, M. Die Renaissance leichter Betone in der Architektur. DETAIL 2007, 47, 522–534. [Google Scholar]
- Bundesregierung. Verordnung Über Einen Energiesparenden Wärmeschutz bei Gebäuden (Wärmeschutzverordnung-WärmeschutzV); Bundesregierung (German Federal Government): Berlin, Germany, 1977; p. 11.
- Cavalline, T.L.; Castrodale, R.W.; Freeman, C.; Wall, J. Impact of Lightweight Aggregate on Concrete Thermal Properties. ACI Mater. J. 2017, 114, 945–956. [Google Scholar] [CrossRef]
- Fares, H.; Toutanji, H.; Pierce, K.; Noumowé, A. Lightweight Self-Consolidating Concrete Exposed to Elevated Temperatures. J. Mater. Civil Eng. 2015, 27, 04015039. [Google Scholar] [CrossRef]
- Roberz, F.; Loonen, R.C.G.M.; Hoes, P.; Hensen, J.L.M. Ultra-lightweight concrete: Energy and comfort performance evaluation in relation to buildings with low and high thermal mass. Energy Build. 2017, 138, 432–442. [Google Scholar] [CrossRef]
- Samson, G.; Phelipot-Mardelé, A.; Lanos, C. A review of thermomechanical properties of lightweight concrete. Mag. Concr. Res. 2017, 69, 201–216. [Google Scholar] [CrossRef]
- Liu, X.; Chia, K.S.; Zhang, M.-H. Development of lightweight concrete with high resistance to water and chloride-ion penetration. Cem. Concr. Compos. 2010, 32, 757–766. [Google Scholar] [CrossRef]
- Helland, S.; Aarstein, R.; Maage, M. ln-field performance of North Sea offshore platforms with regard to chloride resistance. Struct. Concr. 2010, 11, 15–24. [Google Scholar] [CrossRef]
- Lotfy, A.; Hossain, K.M.A.; Lachemi, M. Transport and Durability Properties of Self-Consolidating Concrete Using Three Types of Lightweight Aggregates. ACI Mater. J. 2016, 113, 679–690. [Google Scholar] [CrossRef]
- Real, S.; Bogas, J.A.; Ferrer, B. Service life of reinforced structural lightweight aggregate concrete under chloride-induced corrosion. Mater. Struct. 2016, 50, 17. [Google Scholar] [CrossRef]
- Thomas, M.; Bremner, T. Performance of lightweight aggregate concrete containing slag after 25years in a harsh marine environment. Cem. Concr. Res. 2012, 42, 358–364. [Google Scholar] [CrossRef]
- Vaysburd, A.M. Durability of Lightweight Concrete and its Connections with the Composition of Concrete, Design and Construction Methods. In Proceedings of the ACI SP 136-Structural Lightweight Aggregate Concrete Performance, Detroit, MI, USA, 14 November 1991; pp. 295–318. [Google Scholar]
- Schlaich, M.; Zareef, M.E. Infraleichtbeton (Infra-Lightweight Concrete). Beton Stahlbetonbau 2008, 103, 175–182. [Google Scholar] [CrossRef]
- Schließer, A.E. Warmbeton-Mischungsentwicklung mit Verbesserter Übertragbarkeit in den Realmaßstab. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2019; p. 197. [Google Scholar] [CrossRef]
- Schulze, J.; Breit, W. Experimentalgebäude aus Infraleichtbeton–monolithisch und hochwärmedämmend. Beton Stahlbetonbau 2016, 111, 377–384. [Google Scholar] [CrossRef]
- Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Ultra-lightweight concrete: Conceptual design and performance evaluation. Cem. Concr. Compos. 2015, 61, 18–28. [Google Scholar] [CrossRef]
- DIN EN 13055. Leichte Gesteinskörnungen (Lightweight Aggregates); Beuth-Verlag: Berlin, Germany, 2016; p. 58. [Google Scholar]
- ASTM C330M-17a. Standard Specification for Lightweight Aggregates for Structural Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- ASTM C331M-17. Standard Specification for Lightweight Aggregates for Concrete Masonry Units; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- ASTM C332-17. Standard Specification for Lightweight Aggregates for Insulating Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- Sveindottir, E.L.; Maage, M.; Poot, S.; Hansen, E.A.; Bennenk, H.W.; Helland, S.; Norden, G.; Kwint, E.; Milencovic, A.; Smeplass, S.; et al. LWAC Material Properties-State-of-the-Art. Brite Euram Proj. Euro Lightcon 1998, 111. [Google Scholar] [CrossRef]
- Sveindottir, E.L.; Maage, M.; Poot, S.; Hansen, E.A.; Bennenk, H.W.; Helland, S.; Norden, G.; Kwint, E.; Milencovic, A.; Smeplass, S.; et al. Light Weight Aggregates-Datasheets. Brite Euram Proj. Euro Lightcon. 1997, 132. [Google Scholar] [CrossRef]
- Pauw, A. Structural Lightweight Aggregate Concrete (Concrete Technology, Structural Design). In Proceedings of the 8th IABSE Congress, New York, NY, USA, 9–14 September 1968; pp. 541–557. [Google Scholar] [CrossRef]
- Faust, T. Leichtbeton im Konstruktiven Ingenieurbau; Ernst & Sohn: Berlin, Germany, 2003; p. 307. ISBN 3-433-01613-5. [Google Scholar]
- ASTM C39M-16. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- Tajra, F.; Elrahman, M.A.; Stephan, D. The production and properties of cold-bonded aggregate and its applications in concrete: A review. Constr. Build. Mater. 2019, 225, 29–43. [Google Scholar] [CrossRef]
- Ling, I.H.; Teo, D.C.L. Properties of EPS RHA lightweight concrete bricks under different curing conditions. Constr. Build. Mater. 2011, 25, 3648–3655. [Google Scholar] [CrossRef]
- Wang, H.Y.; Tsai, K.C. Engineering properties of lightweight aggregate concrete made from dredged silt. Cem. Concr. Compos. 2006, 28, 481–485. [Google Scholar] [CrossRef]
- Akçaözoğlu, S.; Ulu, C. Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends. Constr. Build. Mater. 2014, 58, 31–37. [Google Scholar] [CrossRef]
- Гoсударственнoгo Кoмитета Сoвета Министрoв Ссср Пo Делам Стрoительства (State Committee of the Council of Ministers of the USSR on Construction). GOST 9758-77 Запoлнители Пoристые Неoрганические для Бетoна. Метoды Испытаний (Porous Inorganic Aggregates for Concrete. Test Methods); State Committee of the Council of Ministers of the USSR on Construction: Moscow, Russia, 1971; p. 49.
- ACI Committee 213. ACI 213R-14 Guide for Structural Lightweight-Aggregate Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2014; p. 53. [Google Scholar]
- DIN EN 206. Concrete-Specification, Performance, Production and Conformity; Beuth Verlag: Berlin, Germany, 2013; p. 96. [Google Scholar]
- DIN EN 1992-1-1. Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings; Beuth-Verlag: Berlin, Germany, 2011; p. 241. [Google Scholar]
- DIN 4219-1. Teil 1: Leichtbeton und Stahlleichtbeton mit Geschlossenem Gefüge-Anforderungen an den Beton, Herstellung und Überwachung; Beuth-Verlag: Berlin, Germany, 1979; p. 4. [Google Scholar]
- Thienel, K.-C. Besonderheiten bei Leichtbeton in DIN FB 100. In Heft 526 Erläuterungen zu den Normen DIN EN 206-1, DIN 1045-2, DIN EN 13670, DIN 1045-3, DIN 1045-4 und DIN EN 12620, 2nd ed.; Deutscher Stahlbeton, A., Ed.; Beuth Verlag: Berlin, Germany, 2011; Volume 422, pp. 80–84. ISBN 978-3-410-65196-3. [Google Scholar]
- Thienel, K.-C. Application of Lightweight Concrete. In Nordic Mini-Seminar: Structural Lightweight Aggregate Concrete; Øverli, J.A., Zivkovic, J., Eds.; Nordic Concrete Federation: Trondheim, Norway, 2019; pp. 6–9. ISBN 978-82-8208-066-8. [Google Scholar]
- DIN EN 1520. Vorgefertigte Bauteile aus Haufwerksporigem Leichtbeton und mit Statisch Anrechenbarer oder Nicht Anrechenbarer Bewehrung (Prefabricated Reinforced Components of Lightweight aggregate Concrete with Open Structure with Structural and Non-Structural Reinforcement); Beuth Verlag: Berlin, Germany, 2011; p. 119. [Google Scholar]
- Thienel, K.-C. Precast elements of lightweight concrete with a porous matrix. BFT Int. 2000, 66, 62–72. [Google Scholar]
- Deutsches Institut für Bautechnik. Herstellung und Verwendung von Schaumbeton (Production and use of foamed concrete). DIBt Mitt. 2002, 33, 185. [Google Scholar]
- Bergan, P.G.; Bakken, K.; Thienel, K.-C. Analysis and Design of Sandwich Structures Made of Steel and Lightweight Concrete. In III European Conference on Computational Mechanics; Motasoares, C.A., Martins, J.A.C., Rodrigues, H.C., Ambrósio, J.C., Pina, C.A.B., Motasoares, C.M., Pereira, E.B.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-1-4020-4994-1. [Google Scholar]
- Lösch, C.; Rieseberg, P. Infraleichtbeton; Fraunhofer IRB Verlag: Stuttgart, Germany, 2018; p. 214. ISBN 978-3-8167-9931-3. [Google Scholar]
- Lösch, C.; Hückler, A.; Schlaich, M. Infraleichtbeton. Bauphysik 2019, 41, 1–6. [Google Scholar] [CrossRef]
- Callsen, B.; Thienel, K.-C. Besondere Aspekte bei der Entwicklung und Ausführung eines hochwärmedämmenden Hochleistungs-Leichtbetons mit sehr niedriger Betonrohdichte. Beton 2017, 67, 128–134. [Google Scholar]
- HOLCIM GmbH. Außenwände aus Hochwärmedämmendem, Haufwerksporigem Infraleichtbeton LAC4 (Exterior Walls Made of Highly Thermal Insulating, Open Porous Infra-Lightweight Concrete LAC4); Bayerisches Staatsministerium für Verkehr, Bau und Wohnen: München, Germany, 2019; p. 10. [Google Scholar]
- Held, M. Hochfester Konstruktions-Leichtbeton. Beton 1996, 46, 411–415. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2th ed.; Thomas Telford Ltd.: London, UK, 1997; p. 459. ISBN 9780727725929. [Google Scholar]
- Demirboǧa, R.; Gül, R. Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy Build. 2003, 35, 1155–1159. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Abd Elrahman, M.; Stephan, D. Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete. Appl. Sci. 2017, 7, 585. [Google Scholar] [CrossRef] [Green Version]
- Shafigh, P.; Nomeli, M.A.; Alengaram, U.J.; Mahmud, H.B.; Jumaat, M.Z. Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J. Clean. Prod. 2016, 135, 148–157. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; Chung, S.-Y.; Stephan, D. Effect of different expanded aggregates on the properties of lightweight concrete. Mag. Concr. Res. 2019, 71, 95–107. [Google Scholar] [CrossRef]
- DIN EN 1008. Zugabewasser für Beton-Festlegung für die Probenahme, Prüfung und Beurteilung der Eignung von Wasser, Einschließlich bei der Betonherstellung Anfallendem Wasser, als Zugabewasser für Beton (Mixing Water for Concrete-Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete); Beuth-Verlag GmbH: Berlin, Germany, 2002; p. 18. [Google Scholar]
- ACI Committee 304. ACI 304R-00 Guide for Measuring, Mixing, Transporting, and Placing Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2002; p. 41. [Google Scholar]
- Dhir, K.; Mays, R.G.C.; Chua, H.C. Lightweight structural concrete with Aglite aggregate: Mix design and properties. Int. J. Cem. Compos. Lightweight Concr. 1984, 6, 249–261. [Google Scholar] [CrossRef]
- Videla, C.; López, M. Mixture proportioning methodology for structural sand-lightweight concrete. ACI Mater. J. 2000, 97, 281–289. [Google Scholar]
- Nepomuceno, M.C.S.; Pereira-de-Oliveira, L.A.; Pereira, S.F. Mix design of structural lightweight self-compacting concrete incorporating coarse lightweight expanded clay aggregates. Constr. Build. Mater. 2018, 166, 373–385. [Google Scholar] [CrossRef]
- Lotfy, A.; Hossain, K.M.A.; Lachemi, M. Mix design and properties of lightweight self-consolidating concretes developed with furnace slag, expanded clay and expanded shale aggregates. J. Sustain. Cem. Based Mater. 2015, 5, 297–323. [Google Scholar] [CrossRef]
- Ke, Y.; Beaucour, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. [Google Scholar] [CrossRef]
- Grübl, P. Modell zur Quantitativen Beschreibung der Bruchvorgänge in Gefügedichtem Leichtbeton unter Kurzzeitbelastung. Ph.D. Thesis, Technische Hochschule München, München, Germany, 1976. [Google Scholar]
- Thienel, K.-C.; Sposito, R. Effects of Specimen Shape, Size, Age and Curing on Compressive Strength Values Obtained for Structural Lightweight Concrete/ЗАВИСИМОСТЬ ПОКАЗАТЕЛЕЙ ПРОЧНОСТИ ЛЕГКОГО КОНСТРУКЦИОННОГО БЕТОНА ПРИ СЖАТИИ ОТ ФОРМЫ, РАЗМЕРОВ, ВОЗРАСТА И УСЛОВИЙ ТВЕРДЕНИЯ ОБРАЗЦОВ. ALITinform: Cement. Concrete. Dry Mix. 2017, 47, 26–46. [Google Scholar]
- DIN 1045-2. Tragwerke aus Beton, Stahlbeton und Spannbeton–Teil 2: Beton–Festlegung, Eigenschaften, Herstellung und Konformität–Anwendungsregeln zu DIN EN 206-1 (Concrete, reinforced and prestressed concrete structures–Part 2: Concrete–Specification, Properties, Production and Conformity–Application Rules for DIN EN 206-1); Beuth-Verlag: Berlin, Germany, 2008; p. 62. [Google Scholar]
- Bogas, J.A.; Gomes, A.; Gomes, M.G. Estimation of water absorbed by expanding clay aggregates during structural lightweight concrete production. Mater. Struct. 2012, 45, 1565–1576. [Google Scholar] [CrossRef]
- Domagała, L. The Effect of Lightweight Aggregate Water Absorption on the Reduction of Water-cement Ratio in Fresh Concrete. Procedia Eng. 2015, 108, 206–213. [Google Scholar] [CrossRef] [Green Version]
- DIN EN 1097-6. Prüfverfahren für Mechanische und Physikalische Eigenschaften von Gesteinskörnungen-Teil 6: Bestimmung der Rohdichte und der Wasseraufnahme (Tests for Mechanical and Physical Properties of Aggregates-Part 6: Determination of Particle Density and Water Absorption); Beuth-Verlag: Berlin, Germany, 2013; p. 51. [Google Scholar]
- Smeplass, S. Moisture in Light Weight Aggregates-Practical Consequences for the Production Properties of Light Weight Aggregate Concrete. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway, 2000; pp. 844–854. ISBN 9788291341378. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J.; Baeza-Brotons, F. A new methodology for determining water absorption of lightweight, normal-weight and heavyweight aggregates in a viscous medium. Constr. Build. Mater. 2018, 165, 596–607. [Google Scholar] [CrossRef]
- DIN V 18004. Anwendung von Bauprodukten in Bauwerken-Prüfverfahren für Gesteinskörnungen nach DIN V 20000-103 und DIN V 20000-104; Beuth-Verlag: Berlin, Germany, 2004; p. 14. [Google Scholar]
- Lura, P.; Jensen, O.M.; Igarashi, S.-I. Experimental observation of internal water curing of concrete. Mater. Struct. 2007, 40, 211–220. [Google Scholar] [CrossRef]
- ASTM C173M-16. Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- ACI Committee 211. ACI 211.9R-18 Guide to Selecting Proportions for Pumpable Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2018; p. 13. [Google Scholar]
- DIN EN 12350-7. Prüfung von Frischbeton-Teil 7: Luftgehalte-Druckverfahren (Testing fresh concrete-Part 7: Air Content-Pressure Methods); Beuth-Verlag: Berlin, Germany, 2019; p. 26. [Google Scholar]
- Thienel, K.-C. Heavy Lifter–Konstruktion und Bautechnik. Beton 2011, 61, 224–229. [Google Scholar]
- DIN EN 12350-4. Prüfung von Frischbeton-Teil 4: Verdichtungsmaß (Testing Fresh Concrete–Part 4: Degree of Compactability); Beuth-Verlag: Berlin, Germany, 2019; p. 10. [Google Scholar]
- DIN EN 12350-5. Prüfung von Frischbeton-Teil 5: Ausbreitmaß (Testing fresh Concrete– Part 5: Flow Table Test); Beuth-Verlag: Berlin, Germany, 2019; p. 12. [Google Scholar]
- Norden, G.; Thienel, K.-C. Pumping of Lightweight Aggregate Concrete Based on Expanded Clay in Europe. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Concrete, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway; pp. 823–832. ISBN 9788291341378.
- Helland, S.; Maage, M. Strength Loss in Un-remixed LWA-Concrete. In Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, 20–24 June 1995; Holand, I., Hammer, Tor, A., Fluge, F., Eds.; Norwegian Concrete Association: Oslo, Norway, 1995; pp. 533–540. ISBN 8291341079. [Google Scholar]
- Maso, J.C.; Alexander, M.G.; Bentur, A.; Massat, M.; Massazza, F.; Mindess, S.; Monteiro, P.J.M.; Odler, I.; Ollivier, J.P.; Pratt, P.L.; et al. Interfacial Transition Zone in Concrete-State-of-the-Art Report Prepared by RILEM Technical Committee 108-ICC.; E & FN SPON: London, UK, 1996; Volume 11. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Effect of Aggregate, Cement and Mineral Admixtures on the Microstructure of the Transition Zone. MRS Online Proc. Libr. Arch. 1987. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Gjørv, O.E. Penetration of cement paste into lightweight aggregate. Cem. Concr. Res. 1992, 22, 47–55. [Google Scholar] [CrossRef]
- Sarkar, S.L.; Satish, C.; Leif, B. Interdependence of microstructure and strength of structural lightweight aggregate concrete. Cem. Concr. Compos. 1992, 14, 239–248. [Google Scholar] [CrossRef]
- Narattha, C.; Chaipanich, A. Thermal analysis and phase formation of eco-friendly cold-bonded high-calcium fly ash–calcium hydroxide lightweight aggregate at various curing time. J. Therm. Anal. Calorim. 2019, 138, 2123–2130. [Google Scholar] [CrossRef]
- Ul Rehman, M.; Rashid, K.; Ul Haq, E.; Hussain, M.; Shehzad, N. Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization. Constr. Build. Mater. 2020, 232, 117290. [Google Scholar] [CrossRef]
- Weber, S.; Reinhardt, H.-W. A Blend of Aggregates to Support Curing of Concrete. In Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, 20–24 June 1995; Holand, I., Hammer, Tor, A., Fluge, F., Eds.; Norwegian Concrete Association: Oslo, Norway, 1995; pp. 662–671. ISBN 8291341079. [Google Scholar]
- Lura, P. Autogenous Deformation and Internal Curing of Concrete. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2003; p. 208. [Google Scholar]
- Ferrara, L.; Cortesi, L.; Ligabue, O. Internal Curing of Concrete with Presaturated LWA: A Preliminary Investigation. In Proceedings of the ACI SP 305-Durability & Sustainability of Concrete Structures, Bologna, Italy, 1–3 October 2015; Chiorino, M.A., Coppola, L., Mazzotti, C., Realfonzo, R., Riva, P., Eds.; ACI Italian Chapter: Bologna, Italy, 2015; Volume 305, pp. 12.11–12.12. [Google Scholar]
- Bogas, J.A.; Gomes, M.G.; Real, S. Capillary absorption of structural lightweight aggregate concrete. Mater. Struct. 2015, 48, 2869–2883. [Google Scholar] [CrossRef]
- Helland, S.; Chia, K.S.; Zhang, M.H.; Weber, S.; Reinhard, H.-W.; Boyd, S.R.; Holm, T.A.; Bremner, T.W.; Thomas, M.D.A.; Sugiyama, T.; et al. Bremner Symposium on High-Performance Lightweight Concrete. In Proceedings of the ACI SP 212-Sixth CANMET/ACI International Conference on Durability of Concrete, Thessaloniki, Greece, 1–7 June 2003; p. 1161. [Google Scholar] [CrossRef]
- Holm, T.A.; Bremner, T.W.; Vaysburd, A. Carbonation of Marine Structural Lightweight Concretes. In Proceedings of the ACI SP 109-2 International Conference on Performance of Concrete in Marine Environment, St. Andrews, NB, Canada, 21–26 August 1988; pp. 667–676. [Google Scholar] [CrossRef]
- Thienel, K.-C.; Schmidt-Döhl, F.; Feldrappe, V. In-Situ Tests on Existing LWAC Structures. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway, 2000; pp. 912–921. ISBN 9788291341378. [Google Scholar]
- Monteiro, P.J.M.; Maso, J.C.; Ollivier, J.P. The aggregate-mortar interface. Cem. Concr. Res. 1985, 15, 953–958. [Google Scholar] [CrossRef]
- Xie, P.; Beaudoin, J.J. Modification of transition zone microstructure —silica fume coating of aggregate surfaces. Cem. Concr. Res. 1992, 22, 597–604. [Google Scholar] [CrossRef]
- Goldman, A.; Bentur, A. Bond Effects in High-Strength Silica Fume Concretes. ACI Mater. J. 1989, 86, 440–447. [Google Scholar] [CrossRef]
- Thienel, K.-C. Gefügedichter Leichtbeton-Charakteristische Eigenschaften und Anwendungen. In Proceedings of the Schwenk BetonSeminar, Leipzig, Germany, 2 January 2016; p. 28. [Google Scholar]
- Bogas, J.A.; Gomes, A. Compressive behavior and failure modes of structural lightweight aggregate concrete–Characterization and strength prediction. Mater Design 2013, 46, 832–841. [Google Scholar] [CrossRef]
- Siebel, E. Verformungsverhalten, Energieaufnahme und Tragfähigkeit von Normal- und Leichtbeton im Kurzzeitdruckversuch. In Schriftenreihe der Zementindustrie; Zementwerke, V.D., Ed.; Beton-Verlag: Düsseldorf, Germany, 1989; Volume 50, p. 120. [Google Scholar]
- Lusche, M. Beitrag zum Bruchmechanismus von auf Druck beanspruchtem Normal- und Leichtbeton mit geschlossenem Gefüge; Beton-Verlag: Düsseldorf, Germany, 1972; Volume 39, p. 114. ISBN 3764000805. [Google Scholar]
- Baker, A.L.L. A criterion of concrete failure. Proc. Inst. Civil Eng. 1970, 45, 269–278. [Google Scholar] [CrossRef]
- Bogas, J.A.; Ferrer, B.; Pontes, J.; Real, S. Biphasic Compressive Behavior of Structural Lightweight Concrete. ACI Mater. J. 2017, 114, 49–56. [Google Scholar] [CrossRef]
- Chen, H.J.; Yen, T.; Lia, T.P.; Huang, Y.L. Determination of the dividing strength and its relation to the concrete strength in lightweight aggregate concrete. Cem. Concr. Compos. 1999, 21, 29–37. [Google Scholar] [CrossRef]
- Sim, J.-I.; Yang, K.-H.; Kim, H.-Y.; Choi, B.-J. Size and shape effects on compressive strength of lightweight concrete. Constr. Build. Mater. 2013, 38, 854–864. [Google Scholar] [CrossRef]
- Siebel, E.; Wischers, G. Verformungsverhalten und Energieaufnahme von Normal- und Leichtbeton im Kurzzeitdruckversuch. Beton 1989, 39, 303–307. [Google Scholar]
- Kung, L.; Shu, K.L.; Qing, S.M.; Sheng, S.X.; Xiu, L. Research on several physico-mechanical properties of lightweight aggregate concrete. Int. J. Lightweight Concr. 1980, 2, 185–191. [Google Scholar] [CrossRef]
- ÖNORM B4710-1. Beton Teil 1: Festlegung, Herstellung, Verwendung und Konformitätsnachweis; Austrian Standards: Wien, Austria, 2007; p. 160. [Google Scholar]
- NBN B 15-001. Concrete-Specification, Performance, Production and Conformity + Belgian Supplement to NBN-EN 206; Bureau voor Normalisatie: Brussel, Belgium, 2012; p. 123. [Google Scholar]
- DIN EN 1992-1-1/NA. Nationaler Anhang-National Festgelegte Parameter-Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken–Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Beuth-Verlag: Berlin, Germany, 2013; p. 97. [Google Scholar]
- NEN-EN 206 + NEN 8005 nl. In Concrete-Specification, Performance, Production and Conformity + Dutch Supplement to NEN-EN 206; Koninklijk Nederlands Normalisatie Instituut: Delft, The Netherlands, 2016; p. 123.
- BS 8500-2. Concrete. Complementary British Standard to BS EN 206. Specification for Constituent Materials and Concrete; British Standards Institution: London, UK, 2015; p. 48. [Google Scholar] [CrossRef]
- CEB-FIP. Model Code 90; Thomas Telford Services Ltd.: London, UK, 1991; ISBN 978-0-7277-1696-5. [Google Scholar]
- Fib Task Group 8.1. Lightweight Aggregate Concrete (Bulletin 8); International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2000; ISBN 2-88394-048-7. [Google Scholar]
- Thienel, K.-C. Verification of Conversion Factors used for Compressive Strength Values obtained for Structural Lightweight Concrete. In Proceedings of the fib Symposium 2017 High Tech Concrete: Where Technology and Engineering Meet, Maastricht, The Netherlands, 12–14 June 2017; pp. 1636–1644. [Google Scholar] [CrossRef]
- Karamloo, M.; Roudak, M.A.; Hosseinpour, H. Size effect study on compressive strength of SCLC. Comput. Concr. 2019, 23, 409–419. [Google Scholar] [CrossRef]
- DIN EN 12390-2. Prüfung von Festbeton-Teil 2: Herstellung und Lagerung von Probekörpern für Festigkeitsprüfungen; Deutsche Fassung (Testing Hardened Concrete-Part 2: Making and Curing Specimens for Strength Tests; German Version of EN 12390-2); Beuth-Verlag: Berlin, Germany, 2019; p. 8. [Google Scholar]
- Herrnkind, V.; Scholz, S.G. Berücksichtigung des Einflusses der unterschiedlichen Lagerungsarten „trocken“ und „feucht“ auf die Ergebnisse der Druckfestigkeitsprüfungen. Beton 2008, 58, 164–167. [Google Scholar]
- Grube, H.; Herold, W. Der Beton der Rheinbrücke Köln-Deutz. Beton Inf. 1979, 19, 4. [Google Scholar]
- Holm, T.A.; Bremner, T.W.; Newman, J.B. Concrete Bridge Decks: Lightweight Aggregate Concrete Subject to Severe Weathering. ACI Concr. Int. 1984, 6, 49–54. [Google Scholar]
- Roberts, J.E. Lightweight Concrete Bridges for California Highway System. In Proceedings of the ACI SP 136-Structural Lightweight Aggregate Concrete Performance, Detroit, MI, USA, 14 November 1991; pp. 25–272. [Google Scholar] [CrossRef]
- Manhout, J.H.J. Lightweight Concrete in Bridges. In Structural Lightweight Aggregate Concrete; Clarke, J.L., Ed.; Blackie Academic & Professional: Glasgow, Scotland, 1993; pp. 150–167. [Google Scholar]
- Johnson, H.; Helland, S.; Heimdal, E. Construction of the Støvset free cantilever bridge and the Nordhordlandcable stayed bridge. In Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, 20–24 June 1995; Holand, I., Hammer, Tor, A., Fluge, F., Eds.; Norwegian Concrete Association: Oslo, Norway, 1995; pp. 373–379. ISBN 8291341079. [Google Scholar]
- Lange, C.; Riutort, T.; Lebris, J. Lightweight concrete for a cable-stayed bridge-The “Iroise” bridge in Brest. In Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, 20–24 June 1995; Holand, I., Hammer, Tor, A., Fluge, F., Eds.; Norwegian Concrete Association: Oslo, Norway, 1995; pp. 287–298. ISBN 8291341079. [Google Scholar]
- Daly, A.F. Use of Lightweight Aggregate Concrete in Bridges. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway, 2000; pp. 345–354. ISBN 9788291341378. [Google Scholar]
- Fergestad, S.; Jordet, E.A. The Economical Potential of LWAC in 4 Different Major Bridges. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway; pp. 355–364. ISBN 9788291341378.
- Fluge, F.; Markey, I.F.; Hasselø, J.A.; Sletten, G.I.; Espeldid, B. Durability Surveillance of Bergsøysundet Bridge. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway; pp. 874–883. ISBN 9788291341378.
- Melby, K. Use of High Strength LWAC in Norwegian Bridges. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway, 2000; pp. 47–56. ISBN 9788291341378. [Google Scholar]
- Rosseland, S.; Thorsen, T.A. The Stolma Bridge-World Record of Free Cantilevering. In Proceedings of the Second International Conference on Structural Lightweight Aggregate Concrete, Kristiansand, Norway, 18–22 June 2000; Helland, S., Holand, I., Smeplass, S., Eds.; Norwegian Concrete Association: Oslo, Norway, 2000; pp. 406–415. ISBN 9788291341378. [Google Scholar]
- Cousins, T.; Roberts-Wollmann, C.; Brown, M.C. High-Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks; Board, T.R., Ed.; National Cooperative Highway Research Programm: Washington, DC, USA, 2013; Volume 733, p. 91. ISBN 978-0-309-25888-3. [Google Scholar]
- Gjerde, T. Structural Lightweight-Aggregate Concrete (LWA-Concrete) for Marine and Offshore Applications; Norwegian Contractors: May, Norway, 1982; p. 156. [Google Scholar]
- Erlien, O. Heidrun TLP. Utilization of High Strength LWA-Concrete. In Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, 20–24 June 1995; Holand, I., Hammer, T.A., Fluge, F., Eds.; Norwegian Concrete Association: Oslo, Norway, 1995; pp. 337–348. ISBN 8291341079. [Google Scholar]
- Fernandes, J.F.; Bittencourt, T.; Helene, P. A review of the application of concrete to offshore structures. In Proceedings of the ACI SP 253-Fifth ACI/CANMET/IBRACON International Conference on High-Performance Concrete Structures and Materials, Manaus, Brazil, 18–20 June 2008; pp. 377–392. [Google Scholar] [CrossRef]
- Dilli, M.E.; Atahan, H.N.; Şengül, C. A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Constr. Build. Mater. 2015, 101, 260–267. [Google Scholar] [CrossRef]
- Yang, K.-H.; Kim, G.-H.; Choi, Y.-H. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Constr. Build. Mater. 2014, 55, 431–439. [Google Scholar] [CrossRef]
- Suraneni, P.; Anleu, B.P.C.; Flatt, R.J. Factors affecting the strength of structural lightweight aggregate concrete with and without fibers in the 1200–1600 kg/m³ density range. Mater. Struct. 2016, 49, 677–688. [Google Scholar] [CrossRef]
- Filipaj, P. Architektonisches Potential von Dämmbeton; Vdf Hochschulverlag AG: Zürich, Switzerland, 2006; p. 106. ISBN 978-3-7281-3056-3. [Google Scholar]
- Hückler, A.; Schlaich, M. Zur Biegung von Infraleichtbetonbauteilen–Werkstoff-, Verbund-, Trag- und Verformungsverhalten. Beton Stahlbetonbau 2017, 112, 282–292. [Google Scholar] [CrossRef]
- Schlaich, M.; Hückler, A. Infraleichtbeton: Reif für die Praxis. Beton Stahlbetonbau 2017, 112, 772–783. [Google Scholar] [CrossRef]
- Zareef, M.A.M.E. Conceptual and Structural Design of Buildings made of Lightweight and Infra-Lightweight Concrete. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2010; p. 119.
- Liapor GmbH & Co. KG. Leichtbeton mit Geschlossenem Gefüge nach DIN EN 206-1 in Verbindung mit DIN 1045-2 “Liapor-Konstruktionsleichtbeton”; Deutsches Institut für Bautechnik: Berlin, Germany, 2011; p. 7. [Google Scholar]
- Liapor GmbH & Co. KG. Wände aus Leichtbeton mit Haufwerksporigem Gefüge nach DIN 4232:1987-09 “Haufwerksporiger Liapor-Leichtbeton”; Deutsches Institut für Bautechnik: Berlin, Germany, 2011; p. 7. [Google Scholar]
- Real, S.; Bogas, J.A.; Gomes, M.D.G.; Ferrer, B. Thermal conductivity of structural lightweight aggregate concrete. Mag. Concr. Res. 2016, 68, 798–808. [Google Scholar] [CrossRef]
- Thienel, K.-C. Structural lightweight concrete for external walls–A challenge between the poles of improved thermal insulation and fair faced concrete (Легкoвесный кoнструкциoнный бетoн для наружных стен-задача между пoлюсами из улучшеннoй теплoизoляции и oблицoвoчнoгo бетoна). Cement. Concrete. Dry Mix. 2018, 50, 18–29. [Google Scholar]
- Deutscher Beton- und Bautechnik-Verein, e.V. Merkblatt “Sichtbeton” (Leaflet-Exposed Concrete); Deutscher Beton- und Bautechnik-Verein e.V.: Berlin, Germany, 2015; p. 53. [Google Scholar]
Calculated Equilibrium Density max, kg/m3 | Average 28-day Splitting Tensile Strength, min, MPa | Average 28-day Compressive Strength, min, MPa |
---|---|---|
All Lightweight Aggregate | ||
1760 | 2.2 | 28 |
1680 | 2.1 | 21 |
1600 | 2.0 | 17 |
Combination of Normal Weight and Lightweight Aggregate | ||
1840 | 2.3 | 28 |
1760 | 3.1 | 21 |
1680 | 2.1 | 17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thienel, K.-C.; Haller, T.; Beuntner, N. Lightweight Concrete—From Basics to Innovations. Materials 2020, 13, 1120. https://doi.org/10.3390/ma13051120
Thienel K-C, Haller T, Beuntner N. Lightweight Concrete—From Basics to Innovations. Materials. 2020; 13(5):1120. https://doi.org/10.3390/ma13051120
Chicago/Turabian StyleThienel, Karl-Christian, Timo Haller, and Nancy Beuntner. 2020. "Lightweight Concrete—From Basics to Innovations" Materials 13, no. 5: 1120. https://doi.org/10.3390/ma13051120
APA StyleThienel, K. -C., Haller, T., & Beuntner, N. (2020). Lightweight Concrete—From Basics to Innovations. Materials, 13(5), 1120. https://doi.org/10.3390/ma13051120