Preparation, Microstructure, Mechanical Properties and Biocompatibility of Ta-Coated 3Y-TZP Ceramic Deposited by a Plasma Surface Alloying Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.2. Characterization
2.3. Performance Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. Microstructure, Surface Morphology and Composition
3.2. Effect of Ta Coatings
3.3. Cytocompatibility of Uncoated and Ta Coated 3Y-TZP
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stern, K.H. Metallurgical and Ceramic Protective Coatings; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef] [PubMed]
- Hannink, R.H.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia—Containing Ceramics. J. Am. Ceram. Soc. 2010, 83, 461–487. [Google Scholar] [CrossRef]
- Le Ferrand, H.; Bouville, F.; Niebel, T.P.; Studart, A.R. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 2015, 14, 1172–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Ann. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Alghazzawi, T.F.; Janowski, G.M. Effect of liner and porcelain application on zirconia surface structure and composition. Int. J. Oral Sci. 2016, 8, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. Nanocrystalline, ultra-degradation- resistant zirconia: Its grain boundary nanostructure and nanochemistry. Sci. Rep. 2014, 4, 4758–4763. [Google Scholar] [CrossRef] [Green Version]
- Moshaverinia, A.; Roohpour, N.; Chee, W.W.; Schricker, S.R. A review of polyelectrolyte modifications in conventional glass-ionomer dental cements. J. Mater. Chem. 2012, 22, 2824–2833. [Google Scholar] [CrossRef]
- Bernardi, S.; Bianchi, S.; Tomei, A.R.; Continenza, M.A.; Macchiarelli, G. Microbiological and SEM-EDS Evaluation of Titanium Surfaces Exposed to Periodontal Gel: In Vitro Study. Materials 2019, 12, 1448–1460. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.; Bianchi, S.; Botticelli, G.; Rastelli, E.; Tomei, A.R.; Palmerini, M.G.; Continenza, M.A.; Macchiarelli, G. Scanning electron microscopy and microbiological approaches for the evaluation of salivary microorganisms behaviour on anatase titanium surfaces: In vitro study. Morphologie 2017, 102, 1–6. [Google Scholar] [CrossRef]
- Li, R.; Qin, Y.; Liu, G.; Zhang, C.; Liang, H.; Qing, Y.A.; Zhang, Y.; Zhang, K. Tantalum nitride coatings prepared by magnetron sputtering to improve the bioactivity and osteogenic activity for titanium alloy implants. RSC Adv. 2017, 7, 55408–55417. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, M.-D.; Carrión, F.J.; Martínez-Nicolás, G.; López, R. Erosion–corrosion of stainless steels, titanium, tantalum and zirconium. Wear 2005, 258, 693–700. [Google Scholar]
- Kato, H.; Nakamura, T.; Nishiguchi, S.; Matsusue, Y.; Kobayashi, M.; Miyazaki, T.; Kim, H.M.; Kokubo, T. Bonding of alkali-and heat-treated tantalum implants to bone. J. Biomater. Mater. Res. 2000, 53, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Babis, G.C.; Stavropoulos, N.A.; Sasalos, G.; Ochsenkuehn-Petropoulou, M.; Megas, P. Metallosis and elevated serum levels of tantalum following failed revision hip arthroplasty—A case report. Acta Orthop. 2014, 85, 677–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorozhkin, S.V. Advanced ioceramic materials for medical applications, Morden bioceramic materials: Design, testing and clinical applications. Eng. Mine. Cera. Mater. 2001, 12, 227–235. [Google Scholar]
- Yu, H.; Yang, L.; Zhu, L.; Jian, X.; Wang, Z.; Jiang, L. Anticorrosion properties of Ta-coated 316L stainless steel as bipolar plate material in proton exchange membrane fuel cells. J. Power Sour 2009, 191, 495–500. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, F.F. Plasma Surface Metallurgy with Double Glow Discharge Technology; Science Press: Beijing, China, 2017. [Google Scholar]
- International Standard ISO 6872:1995 Dental Ceramics; International Organization for Standardization: Genève, Switzerland, 1995.
- Gao, J.; Hei, H.; Zheng, K.; Wang, R.; Shen, Y.; Liu, X.; Tang, B.; He, Z.; Yu, S. Design and synthesis of diffusion-modified HfC/HfCSiC bilayer system onto WC-Co substrate for adherent diamond deposition. J. Alloys Comps. 2017, 705, 376–383. [Google Scholar] [CrossRef]
- Kou, W.; Kou, S.; Liu, H.; Sjogren, G. Numerical modeling of the fracture process in a three-unit all-ceramic fixed partial denture. Dent. Mater. 2007, 23, 1042–1049. [Google Scholar] [CrossRef]
- Li, L.L.; Hei, H.J.; Wang, Y.S.; Zheng, K.; Ma, Y.; Gao, J.; Zhou, B.; He, Z.Y.; Zong, J.; Yu, S.W.; et al. Microstructure and properties of Ta coatings on the 3Y-TZP ceramic fabricated by plasma alloying technique. J. Alloys Comp. 2017, 805, 1135–1143. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.J.; Huang, X.B.; Wang, Y.; Hang, R.Q.; Yao, X.H.; Tang, B. A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants. J. Mater. Sci. Mater. Med. 2019, 30, 2. [Google Scholar] [CrossRef]
- Myers, S.; Lin, J.; Souza, R.M.; Sproul, W.D.; Moore, J.J. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering. Surf. Coat. Technol. 2013, 214, 38–45. [Google Scholar] [CrossRef]
- Huang, H.-L.; Chang, Y.-Y.; Chen, H.-J.; Chou, Y.-K.; Lai, C.-H.; Chen, M.Y.C. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. Sur. Coat. Technol. 2014, 32, 193–198. [Google Scholar] [CrossRef]
- Masahiro, Y.K.K.; Shigeyuki, S. Role of H2O on the degradation process of Y-TZP. J. Mater. Sci. Lett. 1987, 6, 456–467. [Google Scholar]
- Pandoleon, P.; Kontonasaki, E.; Kantiranis, N.; Pliatsikas, N.; Patsalas, P.; Papadopoulou, L.; Zorba, T.; Paraskevopoulos, K.M.; Koidis, P. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent. Mater. 2017, 33, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Shimada, M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J. Mater. Sci. 1985, 20, 3988–3992. [Google Scholar] [CrossRef]
- Ritter, J.E. Predicting lifetimes of materials and material structures. Dent. Mater. 1995, 11, 142–146. [Google Scholar] [CrossRef]
- Koide, N.; Suzuki, K.; Tsuda, M.; Asaoka, T. Addition of Surface Function to Zirconia for Biomaterial Use. Adv. Sci. Technol. 2008, 57, 139–143. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.B.; Hang, R.Q.; Zhang, X.Y.; Tang, B. Effect of a biomimetic titania mesoporous coating doped with Sr on the osteogenic activity. Mat. Sci. Eng. C-Mater. 2018, 91, 153–162. [Google Scholar] [CrossRef]
- Lim, J.Y.; Shaughnessy, M.C.; Zhou, Z.Y.; Noh, H.; Vogler, E.A.; Donahue, H.J. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008, 29, 1776–1784. [Google Scholar] [CrossRef]
- Balla, V.K.; Bose, S.; Davies, N.M.; Bandyopadhyay, A. Tantalum—A bioactive metal for implants. JOM 2010, 62, 61–64. [Google Scholar] [CrossRef]
- An, N.; Rausch-fan, X.; Wieland, M.; Matejka, M.; Andrukhov, O.; Schedle, A. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent. Mater. 2012, 28, 1207–1214. [Google Scholar] [CrossRef]
Process Parameters | Ta Coating |
---|---|
Flow rate of Ar (FAr/sccm) | 60 |
Substrate temperature (ST/°C) | 800 ± 5 |
Deposition pressure (P/Pa) | 35 |
Deposition time (T/min) | 10 |
Cathode voltage of substrate (U/V) | 400 ± 10 |
Cathode voltage of target (U/V) | 650 ± 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Li, L.; Dong, Y.; Gao, J.; Hei, H.; Ma, Y.; Zhou, B.; He, Z.; Wang, Y.; Yu, S.; et al. Preparation, Microstructure, Mechanical Properties and Biocompatibility of Ta-Coated 3Y-TZP Ceramic Deposited by a Plasma Surface Alloying Technique. Materials 2020, 13, 1265. https://doi.org/10.3390/ma13061265
Zheng K, Li L, Dong Y, Gao J, Hei H, Ma Y, Zhou B, He Z, Wang Y, Yu S, et al. Preparation, Microstructure, Mechanical Properties and Biocompatibility of Ta-Coated 3Y-TZP Ceramic Deposited by a Plasma Surface Alloying Technique. Materials. 2020; 13(6):1265. https://doi.org/10.3390/ma13061265
Chicago/Turabian StyleZheng, Ke, Liangliang Li, Yaqian Dong, Jie Gao, Hongjun Hei, Yong Ma, Bin Zhou, Zhiyong He, Yongsheng Wang, Shengwang Yu, and et al. 2020. "Preparation, Microstructure, Mechanical Properties and Biocompatibility of Ta-Coated 3Y-TZP Ceramic Deposited by a Plasma Surface Alloying Technique" Materials 13, no. 6: 1265. https://doi.org/10.3390/ma13061265
APA StyleZheng, K., Li, L., Dong, Y., Gao, J., Hei, H., Ma, Y., Zhou, B., He, Z., Wang, Y., Yu, S., Tang, B., & Wu, Y. (2020). Preparation, Microstructure, Mechanical Properties and Biocompatibility of Ta-Coated 3Y-TZP Ceramic Deposited by a Plasma Surface Alloying Technique. Materials, 13(6), 1265. https://doi.org/10.3390/ma13061265