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Abstract: The local modification of the composition of glasses by high repetition femtosecond
laser irradiation is an attractive method for producing photonic devices. Recently, the successful
production of waveguides with a refractive index contrast (∆n) above 10−2 by fs-laser writing has been
demonstrated in phosphate glasses containing La2O3 and K2O modifiers. This large index contrast
has been related to a local enrichment in lanthanum in the light guiding region accompanied by
a depletion in potassium. In this work, we have studied the influence of the initial glass composition
on the performance of waveguides that are produced by fs-laser induced element redistribution
(FLIER) in phosphate-based samples with different La and K concentrations. We have analyzed the
contribution to the electronic polarizability of the different glass constituents based on refractive index
measurements of the untreated samples, and used it to estimate the expected index contrast caused
by the experimentally measured local compositional changes in laser written guiding structures.
These estimated values have been compared to experimental ones that are derived from near field
images of the guided modes with an excellent agreement. Therefore, we have developed a method to
estimate before-hand the expected index contrast in fs-laser written waveguides via FLIER for a given
glass composition. The obtained results stress the importance of considering the contribution to the
polarizability of all the moving species when computing the expected refractive index changes that
are caused by FLIER processes.

Keywords: fs-laser writing; photonic devices; glass; ion migration; element redistribution;
waveguides; refractive index contrast

1. Introduction

Fs-laser writing of optical photonics components in dielectrics has been proven as a successful
and versatile technique in many cases [1,2], although it is affected by some limitations, including the
relatively small index contrast accessible in most cases (∆n = nlocal − n0, typically well below 10−2),
which is, in addition, strongly conditioned by the material itself [3]. In this context, the use of fs-laser
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induced element redistribution processes appears as a powerful alternative to produce high index
contrast photonic devices [4]. Indeed, fs laser induced element redistribution (FLIER) processes have
been studied long since. In the FLIER process, the bonds linking the network modifiers or the network
formers are broken as a consequence of the laser energy deposition, and the elevated temperature
induced, and the ions, including O2−, may diffuse, leading to a local modification of the material
composition [5,6]. However, the production of real functional devices that are based on FLIER is
relatively recent. FLIER has been successfully used to produce waveguides [7,8] and waveguide
integrated optical amplifiers and lasers [9].

The most studied glasses for these FLIER based applications are phosphate-based glasses with
La2O3 and K2O modifiers playing a key role in the production of light guiding structures. The guiding
region is enriched in La3+ ions as a consequence of the laser energy deposition, leading to a substantial
refractive index increase, reaching index contrast values ∆n > 10−2, while the K+ ions migrate in the
opposite direction [7,8]. The origin of this index change due to fs-laser irradiation is very different than
that traditionally observed in phosphate glasses with very low or no La2O3 content, where ∆n values
typically in 10−3 range are observed due to the contraction of the phosphate network [10]. Such a kind
of laser induced index modification in phosphate glasses is, in addition, very strongly dependent of
the actual composition of the glass and on the laser processing conditions [10,11].

Although the FLIER process can be generally understood [12,13] as a form of Soret effect [14,15],
the strong temperature gradients involved, the presence of convective flux, plasma and non-linear
propagation effects, shockwaves, etc., add to the phenomenon a very large degree of complexity [4].
Indeed, the ultimate reason making different species migrate in opposite directions is far from being
understood. Above a certain threshold, in the case of phosphates [7,8,16] and borates [17] that are
modified with alkali and rare earth (RE) oxides, the glass former ions remain relatively stable in their
positions, while alkali and RE move in opposite directions. In the case of silicates, the general trend is
to observe the glass former ions to move to the hottest region of the interaction region, while modifiers
move outwards to the colder one [6,13]. The need of preserving the local charge equilibrium upon ion
migration in the laser affected zone suggests that the migration of one ion species requires the cross
migration of one or more ions of a different element in the opposite direction. Therefore, the directional
migration of a single type of ion alone looks improbable.

Whatever the detailed mechanisms underlying the process, we have shown that it can be controlled
through the processing parameters [8,9] to the point of enabling the production of high-performance
photonic components based on FLIER, as above indicated. However, the role of the initial composition
of the glass on the final performance of the waveguides that are produced by FLIER has not yet
been analyzed in detail. From the early work of Brow and coworkers on La-phosphate [18] and
La-Al-phosphate [19] glasses, and the works on FLIER in La-K-phosphate glasses by Fernandez, Hoyo,
Moreno-Zarate et al. [7,8,20], and in La-Na-borate glasses by Dias et al. [17], it is more or less clear that
in the 0–10 mol·% range of La2O3 content in the glass, the local enrichment of a given region in La2O3

should give rise to a refractive index increase nearly proportional to the induced enrichment. At such
low levels of La2O3 in the glass, La3+ ions will be fully coordinated by the terminal oxygens of the
Qn units that form the phosphate network [18], and the glass density will be directly proportional to
the lanthanum addition. However, higher contents of La2O3 will produce a lack of enough terminal
oxygens to coordinate all La3+, giving rise to formation of La-O-La bonds that will affect density and
refractive index non-linearly. This index modification mechanism has also been confirmed in the case
of a borate glass matrix, where, due to the different initial matrix density, the local index increase
versus the local La3+ content is much stronger [17].

For the production of waveguides that are based on La2O3, La3+ ions cross-migrate K+ (or Na+) [7,8]
ions to produce the higher index regions. While the enrichment of La2O3 in the guiding region favors
the local index increase, the out-migration of K2O should tend to reduce it, to a much lower extent
though, given the lower polarizability of K2O when compared to La2O3. As the local index finally
achieved will be given by the polarizability contribution of all the oxides present [21], it is expected
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that the initial content of La2O3 as well as the initial La/K ratio in the matrix should play a strong role
in defining the index contrast achievable upon laser-writing. Based on this idea in this work, we show
how, by determining the contribution to the glass polarizability of the different glass constituents, it is
possible to make accurate predictions of the final index contrast achievable by FLIER for a given initial
composition. We demonstrate the feasibility of our approach for the case of waveguides produced by
FLIER in La-K-phosphate glasses with different relative concentrations of La and K oxides.

2. Materials and Methods

2.1. Glass Samples Preparation, Composition, and Refractive Index Measurements

The phosphate glass samples that were used for fs-laser writing experiments were obtained
through the melting and quenching of batches made by mixing K2CO3, La2O3, Al2O3, Er2O3, Yb2O3,

and (NH4)2HPO4 reagent grade powders, whose compositions are indicated in Table 1. The batches
were slowly calcined up to 400 ◦C overnight in porcelain crucibles (79MF1a; Haldenwanger GmbH,
Waldkraiburg, Germany), and then melted at 1450 ◦C during 4 h. The melts were then poured, crashed to
very fine powder, and remixed in an agate ball mill (Pulverisette 6; Fritsch GmbH, Idar-Oberstein,
Germany) for ten minutes in order to improve the homogeneity of the samples. The remixed powder
was re-melted in Al2O3 crucibles that were coated with ZrO2 at 1450 ◦C to obtain the final glass
samples, which were finally annealed above their glass transition temperature. This latter (Tg) has been
determined from the thermal expansion curves obtained in a 402 EP dilatometer (Netzsch-Gerätebau
GmbH, Selb, Germany) at a heating rate of 5 K·min−1. The Tg of the three glass samples was comprised
between 510 ◦C and 550 ◦C. The homogeneity of the samples, and the absence of striae and residual
stress were tested by the shadow method and by means of a polariscope.

Table 1. Molar composition (mol·%), and K2O/La2O3 molar compositional ratio of the samples as
determined from XRF; and the corresponding Cauchy coefficients (A and B) for the refractive index as
determined from the ellipsometric measurements.

Sample K2O La2O3 Al2O3 SiO2 P2O5 Er2O3 Yb2O3 K2O/La2O3 A B

PS01 10.6 7.2 5.7 15.6 57.7 1 2.2 1.5 1.523 0.0006
PS02 14.4 4.5 4.9 14.6 58.3 1 2.2 3.2 1.514 0.0056
PS03 17.0 2.5 4.7 14.7 57.0 1.3 2.8 6.8 1.515 0.0069

X-Ray Fluorescence (XRF) Spectroscopy was used to analyze the chemical composition of the
final glasses in a MagicX 2400 spectrometer (Malvern Panalytical B.V., Eindhoven, The Netherlands)
through the pearl method, using 0.3 g of glass with 5.5 g of Li2B4O7. Table 1 gathers the corresponding
analyzed compositions in mol·%. The relative error in the determined compositions has been estimated
to be within 2% with small differences, depending on the element considered. For the three samples,
the loss of P during the glass production is very similar, leading to a P2O5 molar content nearly equal
for the three glasses (~57–58 mol·%). There is, in addition, a strong incorporation of SiO2 from the
crucible during the melting, which leads to approximately 15 mol·%.

After annealing, the samples were cut and polished to optical quality before optical characterization
and fs-laser writing. The size of the produced samples was typically around 10 × 20 × 6 mm3.
Their refractive index was characterized by means of spectroscopic ellipsometry in the near IR
(800–1700 nm, including the S-L optical communications bands). Ellipsometric spectra were measured
at several spatial locations in each sample in order to achieve statistically significant values. The acquired
Ψ-spectra were fitted using the Cauchy equation for the refractive index n as a function of the wavelength,
λ (n(λ) = a + B

λ2 ). This dispersion equation describes very well the behavior of the refractive index of
the glasses in the studied spectral region, where they are transparent (absorption coefficient k = 0).
Table 1 presents the obtained coefficients a and B. Considering the uncertainties of the different
parameters involved (angle positioning, wavelength, fit, ...), the absolute error in the obtained refractive
index values has been estimated to be smaller than ±5 × 10−3 [20]. It must be considered though
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that, for the determination of the contribution of the polarizabilities of the glass constituents that are
discussed in Section 3.1, the relevant parameter is the difference between the index of the samples
with different composition, and such difference can be evaluated with accuracy close to 10−3 [22].
Indeed, in an ideal situation, by the direct inversion of the ellipsometric equations at a given wavelength
without fitting the spectral dispersion, an index determination accuracy of close to 10−4 could be
potentially achieved for sufficiently small instrumental errors [22].

2.2. Fs-Laser Writing and Characterization of the Light Guiding Structures

A femtosecond laser amplifier Satsuma HP (Amplitude, Pessac, France) operating at 1030 nm
with a 500 kHz repetition rate and ~400 fs pulse width was used to produce light guiding structures
in conditions that are similar to those reported by Del Hoyo et al. in Ref. [8]. The writing beam was
circularly polarized and slit shaped (width 1.2 mm) before being focused in the sample 100 µm beneath
the surface with a 0.68 NA aspheric lens. a motorized stage (x,y,z) allowed for scanning the sample
transversely to the writing beam to generate the waveguides. We used pulse energies in the 600–750 nJ
range and a sample scanning velocity of 60 µm/s, leading to structures with nearly constant diameter,
as shown in the previous reference. Guiding structures that were typically 10 mm long were produced.
After writing, the waveguide entrance and output facets of the samples were polished and optical
transmission images of the structures were recorded by optical microscopy.

The performance of the waveguides was analyzed by coupling laser light in the waveguides
at 976 nm or several wavelengths between 1450 and 1640 nm with an SMF-28 single-mode fiber.
The inclusion of small amounts of Er2O3 and Yb2O3 in the composition of the sample was undertaken
on purpose to facilitate the waveguides alignment during the characterization process, by means
of the up-conversion green emission of the Er3+ ions upon excitation at 976 nm. After alignment,
the output facet of the waveguide at the different wavelength was imaged with a 50× objective on an
infrared camera to acquire the guided mode intensity distribution. Simulations of the measured mode
field diameters (MFD), assuming a step-index waveguide, were then performed [23,24], leading to
estimated ∆n values that were consistent with the experimentally measured MFD values at the different
wavelengths used (1440, 1490, 1534, 1590, and 1640 nm).

Finally, after modal characterization, one of the end facets of the waveguides was covered by
sputtering deposition with a 7 nm-thick Au layer to avoid space charge effects during SEM imaging
and EDX compositional analysis. These measurements were performed in a S440 Scanning Electron
Microscope (SEM) (Leica Cambridge Ltd., Cambridge, UK) that was equipped with a Quantax X-ray
microanalysis system (Bruker AXS, Karlsruhe, Germany) with a resolution of 125 eV.

3. Results and Discussion

3.1. Refractive Index and Molar Polarizabilities of the Samples

Figure 1 shows the refractive index of the three glass samples (PS01–PS03) as a function of
wavelength in their transparency region (over the telecom bands S to L, 1460–1640 nm). It is worth
noting that the index differences between the three samples can be clearly distinguished in the Cauchy
fits of the Ψ-spectra. It can be seen that the spectral dependence shows a nearly parallel behavior for
the different compositions with an increasing index for increasing La2O3 contents. Although the linear
dependence of the index of phosphate-lanthanum glasses with the La2O3 content has been discussed
in refs. [18,20], it must be noticed that, in this case, the comparison between the index of the three
samples in terms of the La2O3 concentration alone is not fully consistent, since the concentration of
K2O is very different in the three samples and all components contributed to the glass polarizability.
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Figure 1. (Continuous lines) Refractive index of the samples PS01, PS02, and PS03 as a function of
wavelength in the 1460–1625 nm interval determined from ellipsometry measurements. The symbols
(and dashed lines) correspond to the index values of the three samples at 1530 nm estimated from the
polarizabilities of the glass constituents, as explained in the text.

Further insight on the optical properties of these glasses and the origin of the index contrast in
the laser processed samples can be achieved by analyzing their optical properties while using the
polarizability approach, following the works from Dufy [21,25] and Dimitrov and coworkers [26].
From experimental refractivity measurements, by using the Lorentz–Lorenz relation, the molar
electronic polarizability (αm) of a solid can be related to its refractive index (n) and molar volume
(Vm) [25]:

αm =
3

4π
Vm

NA

n2
− 1

n2 + 2
(1)

For predominantly ionic media, the values of αm allow for the assignment of polarizabilities to
individual cations and anions.

αm =
∑
αi +

∑
α2−

anion(i) (2)

where
∑
αi denotes the total molar cation polarizability and

∑
α2−

anion(i) the anions contribution.
In general, while for most cations and anions their polarizabilities can be considered as nearly constant
parameters that can be additively combined, in the case of oxide glasses, there is a much stronger
variability of the oxide ion (α2−

O ) polarizability that is related to the different polarizing power of the
cations with which it is combined in the glass matrix. It is possible to estimate an average value for the
polarizability of the oxide anion (α2−

O ) by using an additive approximation, in which:

α2−
O =

 ( Vm

2.52

) (
n2

0–1
)

(n2
0 + 2)

−

∑
αi

(N2−
O

)−1
(3)

where
∑
αi denotes the total molar cation polarizability and N2−

O the number of oxide anions [27].
In what follows, we use such an approximation to estimate the value of the oxide anion (α2−

O )
polarizability for the P2O5 in the different samples, while using the cation polarizabilities included in
Table 2 for the simple oxides, cations, and anions taken from Refs. [26–29]. For the case of Er2O3 and
Yb2O3, although polarizability values that were derived from dielectric constant measurements up
to MHz frequencies have been reported by Shannon [30] and for the ground state atoms of Er and
Yb by Choi as the electric dipole polarizabilities by Choi et al. [31], due to the lack of reliable values
for polarizabilities at optical frequencies we have used the ones that were reported for La2O3. This is
a reasonable approximation, given that Er3+ and Yb3+ ions will experience a similar local environment
as La3+ and show a similar electronic structure and ionic radii.
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Table 2. Polarizabilities of the different single oxides constituting the samples of Table 1. The cation
and anion contributions are also indicated. The data, except for Yb2O3, where taken from Refs. [26–29].
The value indicated in parenthesis for P2O5 (bolded) has been calculated as indicated in the text.

Polarizability (Å3) K2O La2O3 Al2O3 SiO2 P2O5

Total 3.540 10.436 4.203 2.887 6.792
αcation 0.841 1.048 0.054 0.033 0.021
α2−

O 1.858 2.780 1.365 1.427 1.350 (1.332)

We have used the values of αcation
(
AxOy

)
and those of (α2−

O

(
AxOy

)
) indicated in Table 2 in order to

estimate the oxide anion polarizability in the P2O5 forming the glass samples (α2−
O, (P2O5)glass). The value

estimated for (α2−
O, (P2O5)glass) (1.332 Å3, shown in parenthesis in Table 2) was obtained by minimizing

the RMS difference between the electronic polarizability (αm) of the different samples, derived from
refractive index values (Equation (1) that were obtained by ellipsometry), and the calculated values
of αm using [α2−

O, (P2O5)] as a fitting parameter. The validity of this approximation relies on the fact
that P2O5 is the major constituent of the glass, and its concentration remains essentially unchanged in
the synthesized samples. It is remarkable that the value that was obtained for (α2−

O, (P2O5)glass) is less
than 1.5% smaller than the one corresponding to the single (pure) oxide and it is within the typical
expected range for semi-covalent predominantly acidic oxides [28]. Therefore, the polarizability-based,
estimated refractive index values show excellent agreement with the ellipsometry measurements
for the three studied compositions, even with such minor change. The calculated values have also
been included in Figure 1. Additionally, it must be emphasized, at this point, that, although the
polarizability of La2O3 is about three times higher than that of K2O, the migration of K+ ions out from
the guiding region might have a large impact in the local index contrast finally achieved, especially in
those samples with large alkaline oxide content like PS03.

3.2. Morphology of the Structures, Guiding Performance and Refractive Index Contrast Estimations

Figure 2a shows a set of optical microscopy images of structures that are produced in the three
samples for different pulse energies. The images correspond to a cross section view of one of the end
facets of the laser written guiding structure. In all cases, a clear contrasted region that is closer to the
surface on top of dark contrasted zone forms the structures. The local bright or dark contrast in the
images is indicative of the local enrichment (or depletion) of La2O3 in the region causing an increase
(or diminution) of refractive index, enabling the structures to guide light, as thoroughly discussed
in [4,7,8]. Along with this main feature, we can see that the light guiding region adopts a symmetric,
nearly-circular shape, whose transverse dimension (with respect to the beam incidence) remains nearly
unchanged as a function of energy, as shown in Figure 2b. Still, as the energy increases, the longitudinal
dimension of the La-enriched zone shows a somewhat stronger increase.

As above indicated, we have chosen the indicated pulse energies following Ref. [8] in order to be
above the threshold for La-K cross migration and waveguide formation and below the limit where
the heat accumulation effects turn out to excessive [32], leading either to a very strong increase of the
size of the structures or strong damage [8]. The images in the figure also show that the length of the
dark contrasted region increases with energy, which indicates that the region that is depleted in La2O3

gets larger, consistently with the slight increase in size of the light guiding zone. Furthermore, it is
possible to appreciate for the three compositions that the vertical spread of the laser transformed
region is longer than that of the strongly contrasted zones, above described. In all cases, the formation
of a filament of increasing length (for increasing energy) can be appreciated, which is indicative for
non-linear beam propagation effects (filamentation) [33,34].
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Figure 2. Optical microscopy images in transmission of structures written in the three different samples
at different energies. The image plane corresponds to the output plane of the structures (transverse to
the sample scan direction, laser incident from the top of the image) (a); Diameter of the refractive index
increased region in the direction transverse to the laser beam propagation axis as function of the pulse
energy (b) for the different samples.

In terms of morphology, for a given pulse energy, the most important difference between the three
compositions analyzed is the apparent stronger contrast of the compositionally modified zones when
the La2O3 increases, and the appearance of some internal stress in the form of light and dark grey
stripes in the background of the structures in the PS01 sample (less visible in PS02). This feature could
be indicative of a diminution of the thermal conductivity of the glass for increasing La2O3 contents.
In this respect, it must be considered that, for sample PS03 (lowest La2O3 content), the expected larger
thermal conductivity seems to modify the shape of the thermal gradient along the laser propagation
axis during the process, which leads to the appearance of a second and weaker La3+ migration pole
located at the bottom of the structure. This is clearly visible in the structure that was written at 695 nJ in
PS03. This additional migration pole has been also observed in other glasses (borates) upon waveguide
writing via FLIER [17].

Figure 3a shows the near field images of light guided modes at 1534 nm corresponding to the
structures in Figure 2a. For the three compositions, in the energy interval selected, the structures
behave as single mode waveguides at this wavelength. It can be seen though that, for a given writing
pulse energy, the mode field diameter decreases as a function of the initial La2O3 content of the glass
sample, showing the minimum size for the PS01 sample. These features are consistent with refractive
index contrast values (∆n) of at least 4−5 × 10−3, which increase with the initial La-content of the
sample for a given pulse energy. a more precise determination of the index contrast can be made by
using the mode field diameters that were measured at several wavelengths while using the method
described in Refs. [23,24]. The error bars derive from the measured mode field diameters and the
expressions that are included in those references. Figure 3b shows the corresponding values, where we
have also included values that were obtained at higher writing energies to show the detrimental
effect of excessive energy accumulation on the performance of the structures. For the lowest energy
used, the index contrast already reaches values ∆n > 9 × 10−3 for all of the analyzed compositions,
this value is higher the higher the initial La2O3 content of the sample. However, the behavior for
higher pulse energies shows some clear differences for the three compositions under study. For sample
PS01, the index contrast shows a slight increase with energies up to approximately 750 nJ, where ∆n
starts to decrease. Sample PS02 shows a similar behavior, although the decay of ∆n starts at a lower
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pulse energy (~700 nJ). Such a decay can be understood in terms of a diminution of the local La2O3

concentration in the guiding region. This effect has been further confirmed by EDX measurements (see
below), and it is easier to appreciate in the structure morphology as function of energy in sample PS03,
where the contrast on the La-enriched zone starts to decrease with the pulse energy, even for energies as
low as 650 nJ. The increase of the extension of the La-enriched guiding region (which gets less defined,
see Figure 2a), along with the appearance of a second migration pole (see above), might explain the
observed behavior. Remarkably, it is feasible to generate waveguides with an index contrast ∆n~10−2,
even for this composition, with an initial La2O3 concentration of just 2.4 mol·%. To conclude this section
regarding the guiding performance of the generated structures, it should be noticed that we have not
made any attempt to optimize the propagation losses of the structures that range between 0.7 and
3 dB/cm, depending on the writing pulse energy and sample composition. Although we cannot discard
that as a consequence of the FLIER process structural defects, like non-bridging oxygen hole centers
(NBOHC’s) or dangling bonds, can be formed and contribute to optical losses, the propagation losses
in waveguides produced by laser induced element redistribution are usually low (below 1 dB/cm),
as shown for instance in Refs [7–9,17] of the manuscript. This is something that can be attributed to the
thermal annealing driven by heat accumulation effects at high laser repetition rates [35].
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Figure 3. (a) Near field images of the guided modes propagated at 1534 nm by the structures shown in
Figure 2a. The corresponding compositions and pulse energies are indicated in the (b) Refractive index
contrast (∆n) determined from near field measurements (see text) as a function of the writing pulse
energy for the three analyzed compositions. The values were estimated using images similar to those
in (a) at six different wavelengths from 1420 nm to 1640 nm.

3.3. Compositional Characterization and Calculation of the Expected Index Contrast Based on Polarizabilities

The composition of the laser modified regions was analyzed by EDX spectroscopy in a SEM
in order to analyze the local refractive index variations quantitatively in terms of the compositional
changes associated to the FLIER process. For such measurements, we used the waveguides showing
larger index contrast difference for a given writing pulse energy (below damage threshold) among the
different compositions (i.e., those structures written at 695 nJ, c.f. Figure 3b). The so-obtained local
compositions were used to estimate the local refractive index while using the ionic polarizabilities that
are discussed in Section 3.1 and compared to the refractive index contrast of the structures that were
obtained from the mode imaging analysis.

Figure 4 shows a set of SEM images of the waveguides in Figure 2 for a writing pulse energy of
695 nJ. EDX maps corresponding to the distribution of La and K in the laser affected zone are also
included in the figure. The comparison of the SEM images with the corresponding optical microscopy
ones in Figure 2 shows that the contrast of the regions enriched or depleted in La2O3 is similar
in both techniques, as expected from previous works [7,8]. The La2O3 enrichment (or depletion)
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produces a positive (or negative) Z-contrast in the laser-modified regions, something that is seen in
the transmission optical micrographs as a bright (or dark) contrast that is caused the local increase
(or decrease) of refractive index. The EDX maps at the right of each SEM image allow for clearly
appreciating the regions that are enriched or depleted in La2O3 and K2O.Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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Figure 4. Scanning Electron Microscope (SEM) images and EDX maps of La (red) and K (blue)
distribution in structures written at 695 nJ in samples (PS01, PS02, PS03) with different La2O3 and
K2O content. The plot is a cross section of the distribution of both species along a vertical line passing
through the center of the structure written in the PS02 sample. The scale bar is the same for all
the images.

For the pulse energy studied, only La and K show concentration changes above experimental
error (~10% relative change with respect to the initial composition, depending on the element). It is
important to consider that the X-ray emission efficiency associated to the L and M shells involved in
the characteristic fluorescence of lanthanides is low, which makes it more difficult to quantify small
changes in the local concentration of La in samples with initially low concentration of this element
(e.g., PS03). Despite this, it is possible to appreciate the presence of the second La3+ migration pole
located at the bottom of the structure written in sample PS03 in Figure 4. The plot overlying PS02
SEM image corresponds to the EDX signal that is associated to the Lα and Kα emission lines of La
and K atoms, respectively, along a vertical line crossing the structure, evidencing the cross-migration
of La and K species during the process. This line scan has been smoothed to show more clearly the
overall distribution of La and K along the Z axis of the structure. Similar line scans with a spatial
resolution of ~0.4 µm were performed in three different waveguides written at the same energy in
each sample to determine the relative changes in the La3+ and K+ concentration in the guiding region.
The concentration changes (relative to the pristine material) that were measured at the center of the
guiding region in the line scans are included in Table 3, along with the corresponding error estimates.
The later derive from the noise in the scan signal, and the variation of the measured values over the
three waveguides analyzed. The so-determined compositional changes were used to calculate the local
polarizability (and refractive index) at the center of the guiding zone of the written structures while
using the values given in Table 1 and Equations (1) and (2). The corresponding index contrast values
are also shown in Table 3 and compared to those determined from near field measurements of the
light guided by the structures (cf. Figure 3b). The error of the ∆n values that are derived from local
compositional measurements derives from the error in the local changes of La3+ and K+ concentration
in the guiding region. The error in the determination of ∆n based on near field mode images is related
to the experimental error in the measured mode field diameters and its influence in the expressions
that are included in Refs. [23,24], as indicated in Section 3.2.
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Table 3. Average local La2O3 enrichment and K2O depletion at the center of the guiding region of
three waveguides written at 695 nJ in samples PS01, PS02 and PS03. The index contrast indicated
(∆n = nlocal − n0) has been determined from the local composition of the guiding structures (“Estimated
values”) using the values in Table 2 and Equations (1) and (2) or using the near field images of the
modes propagated by the structures at several wavelengths (“Measured values”). The values shown
were averaged over three waveguides written in the same conditions.

Sample La2O3 Enrichment (%) K2O Depletion (%) Estimated ∆n (×10−3) Measured ∆n (×10−3)

PS01 25 ± 5 22 ± 5 11 ± 6 12.8 ± 2.0
PS02 24 ± 7 9 ± 2 7.4 ± 5 6.6 ± 0.6
PS03 29 ± 6 10 ± 4 1.6 ± 4 5.0 ± 0.4

Table 3 clearly shows that, for the three samples, the index contrast that is estimated from the
local compositional measurements at the center of the guiding region is consistent with the near
field measurements of the guided modes. In the comparison, it must be noticed that the former is
a local value, while the second is an average of the index change over the guiding region. It is also
worth noting that, for the two samples with the higher La2O3 contents (PS01, PS02), the experimental
error in the determination of the local K2O content is clearly smaller than in sample PS03. This is
due to the peculiar morphology of the later, as can be seen in the optical images and SEM images of
Figures 2 and 4, which shows the presence of a secondary migration pole and a waist in the element
distribution that also spreads over a much longer region. This makes the index contrast that is estimated
by EDX measurements in sample PS03 to be well below that determined from mode field diameter
measurements. In contrast, the agreement between both values is excellent for samples PS01 and PS02.

It is worth noting though that there is an apparent inconsistency in the values that are given
in Table 3. At 695 nJ sample PS03 shows the highest relative enrichment in La2O3 in the guiding
region (29%), while the highest index contrast is reached in sample PS01 with a lower La2O3 relative
enrichment (25%). However, for sample PS03, such enrichment is equivalent to reach an absolute
La2O3 local content of just 3.2 mol·%, while for sample PS01 the local La2O3 concentration reaches
a value of 9%. In addition, in sample PS03, the local K2O concentration decreases from 17 mol·% to
15.3%, (10% change), while for sample PS01 (with a much lower initial K2O content) a relative decrease
of 22% brings its local K2O content from 10.6 mol·% to 8.3 mol·%, an approximately similar diminution.
In other words, an excessive depletion in K2O might be not compensated (in terms of index), unless its
polarizability contribution is compensated with a sufficiently high La2O3 enrichment, something that
in a sample with a low initial content of La2O3 would require a strong relative compositional increase.

In Figure 5 we have plotted the index contrast at the guiding region as a function of the molar
concentration of La2O3 for the three different samples, including the values estimated from EDX
measurements (square symbols) and those derived from near field measurements (triangle symbols).
The error bars of the EDX-based values are directly related to the maximum and minimum values
that the local K2O concentration can reach (c.f. Table 3). If we look at these error bars, we can see
that, due to the relatively large amount of K2O in sample PS03 (17 mol·% c.f. Table 1), a relative K2O
diminution in the guiding region of just 14% can lead to negative ∆n values, even for a La2O3 local
enrichment of 30% (3.35 mol·%), while a depletion of 6% of K2O would lead to a positive contrast
above 5 × 10−3 for the same La2O3 enrichment. The effect of the relative K2O depletion in reducing
the index contrast in the guiding region is obviously reduced when the initial K2O content of the
sample is smaller. Additionally, when the error in the K2O concentration is smaller, the consistency
between polarizability-based index contrast estimations and near field measurements substantially
increases, as it happens in samples PS01 and PS02. These features clearly show that we must consider
the contribution to the local polarizability of all the moving species and not only of those generating
the index increase in order to compute the index changes in the guiding region.
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Figure 5. Refractive index contrast as a function of the local La2O3 concentration in the guiding region
estimated from local compositional measurements (squares) and near field measurements (triangles).
The shadowed regions mark the limits for the polarizability (composition) based estimates considering
the maximum and minimum values of K2O content in the guiding region according to the error values
that are given in Table 3.

We have also included two dashed lines for each sample in Figure 5 to further illustrate the
importance of the role of K2O in the local index of the structures formed by cross migration of La2O3

and K2O. They correspond to a calculation of the material polarizability while assuming a linear
variation of the La2O3 for the maximum and minimum local concentration of K2O derived from
the errors quoted in Table 3. Thus, the dashed lines provide a boundary for the expected index
contrast of the three samples upon laser writing. The analyzed samples show K2O/La2O3 ratios from
approximately 1 to 7 and La2O3 contents from ~2 to 7 mol·% and, in all cases, the predictions based on
the polarizability approach are quite accurate. We can also use this approach to infer some features of
the FLIER process occurring at lower writing pulse energies. In sample PS03, ∆n values that are close
to 10−2 are experimentally observed at 596 nJ. a comparison of this value with the boundaries given by
the shadowed region for this sample in Figure 5 suggests that the depletion of K2O in the guiding zone
for this pulse energy should not be higher than ~6%, while the expected La2O3 enrichment should be
close to 40%. This stronger La-enrichment and weaker K-depletion in the guiding region is consistent
with both the initially lower La2O3 and the higher K2O content of the sample.

4. Conclusions

We have used ellipsometry measurements to compute the polarizability of the different glass
constituents in phosphate-based glasses that were modified with different amounts of La2O3 and
K2O, particularly the oxide ion (α2−

O ) average polarizability in the P2O5 matrix with excellent results.
The obtained values have been used to predict the refractive index contrast of optical waveguides
that are produced by fs-laser induced element redistribution (FLIER) processes involving the cross
migration of La3+ and K+ ions. The estimations were based on experimental EDX compositional
measurements at the guiding region of structures that were produced in glasses with different La2O3

and K2O contents and they show excellent agreement with index contrast measurements based in near
field imaging of the light guided modes. Along with the feasibility of predicting the expected index
contrast in waveguides produced by FLIER in samples of different compositions, the results of the
present manuscript evidence the importance of considering the contribution to the local polarizability
of all the species that are involved in the FLIER process. The modelling results also justify the feasibility
of producing waveguides with an index contrast close to 10−2 in samples with an initial La2O3 as low
as 2 mol·%.
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