Numerical Study on the Variability of Plastic CTOD
Abstract
:1. Introduction
2. Numerical Model
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Metamodeling
3.3. Metamodel Validation
3.4. Variability Analysis Based on Metamodels
4. Conclusions
- The type of screening DOE and analysis does not interfere with the identification of the relevant parameters influencing the plastic CTOD range: the parameters E, Y0 and Fmax are consistently shown to be the most influential;
- Both FCCCD and BBD metamodeling approaches provide similar and accurate predictions of the plastic CTOD range, with RRMSE = 1.7% (FCCCD) and RRMSE = 0.9% (BBD);
- The predicted variability in the plastic CTOD range results presents right-skewed distributions that follow a coefficient of variation close to 15%.
Author Contributions
Funding
Conflicts of Interest
References
- Paris, P.; Erdogan, F. A critical analysis of crack propagation laws. J. Basic. Eng. 1963, 85, 528–534. [Google Scholar] [CrossRef]
- Elber, W. The significance of fatigue crack closure. Damage Toler. Aircr. Struct. 1971, 486, 230–242. [Google Scholar]
- Wang, H.; Zhang, W.F.; Sun, F.Q.; Zhang, W. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation. Materials 2017, 10, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.B. Phenomenological Approach to Probabilistic Models of Damage Accumulation—Application to the Analysis and Prediction of Fatigue Crack Growth. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2019. [Google Scholar]
- Castillo, E.; Canteli, A.F.; Siegele, D. Obtaining S–N curves from crack growth curves: An alternative to self-similarity. Int. J. Fract. 2014, 187, 159–172. [Google Scholar] [CrossRef]
- Zhu, S.P.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 2017, 103, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Sankararaman, S.; Ling, Y.; Shantz, C.; Mahadevan, S. Uncertainty quantification in fatigue crack growth prognosis. Int. J. Progn. Health Manag. 2011, 2, 1–14. [Google Scholar]
- Wentao, H.; Jingxi, L.; De, X. Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis. Eng. Fract. Mech. 2015, 139, 56–77. [Google Scholar]
- Kim, J.H.; Chau-Dinh, T.; Zi, G.; Lee, W.W.; Kong, J.S. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability. Eng. Fract. Mech. 2016, 156, 182–196. [Google Scholar] [CrossRef]
- Vélez, A.; Sánchez, A.; Fernández, M.; Muñiz, Z. Multivariate analysis to relate CTOD values with material properties in steel welded joints for the offshore wind power industry. Energies 2019, 12, 4001. [Google Scholar] [CrossRef] [Green Version]
- Sankararaman, S.; Ling, L.; Mahadevan, S. Uncertainty quantification and model validation of fatigue crack growth prediction. Eng. Fract. Mech. 2011, 78, 1487–1504. [Google Scholar] [CrossRef]
- Ocampo, J.D.; Crosby, N.E.; Millwater, H.R.; Anagnostou, E.L.; Engel, S.J.; Madsen, J.S.; Engel, K.W. Probabilistic damage tolerance for aviation fleets using a kriging surrogate model. In Proceedings of the AIAA SciTech Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Leser, P.; Hochhalter, J.D.; Warner, J.E.; Newman, J.A.; Leser, W.P.; Wawrzynek, P.A.; Yuan, F.-G. Probabilistic fatigue damage prognosis using surrogate models trained via three-dimensional finite element analysis. Struct. Health Monit. 2017, 16, 291–308. [Google Scholar] [CrossRef] [Green Version]
- Millwater, H.; Ocampo, J.; Crosby, N. Probabilistic methods for risk assessment of airframe digital twin structures. Eng. Fract. Mech. 2019, 221, 106674. [Google Scholar] [CrossRef]
- Karve, P.M.; Guo, Y.; Kapusuzoglu, B.; Mahadevan, S.; Haile, M.A. Digital twin approach for damage-tolerant mission planning under uncertainty. Eng. Fract. Mech. 2020, 225, 106766. [Google Scholar] [CrossRef]
- White, P.; Molent, L.; Barter, S. Interpreting fatigue test results using a probabilistic fracture approach. Int. J. Fatigue 2005, 27, 752–767. [Google Scholar] [CrossRef]
- Virkler, D.A.; Hillberry, B.M.; Goel, P.K. The Statistical Nature of Fatigue Crack Propagation. J. Eng. Mater. Technol. 1979, 101, 148–153. [Google Scholar] [CrossRef]
- Wu, W.F.; Ni, C.C. Statistical aspects of some fatigue crack growth data. Eng. Fract. Mech. 2007, 74, 2952–2963. [Google Scholar] [CrossRef] [Green Version]
- Bahloul, A.; Ahmed, A.B.; Bouraoui, C. An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint. C R Mec. 2018, 346, 1–12. [Google Scholar] [CrossRef]
- Antunes, F.V.; Branco, R.; Prates, P.A.; Borrego, L. Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1309–1320. [Google Scholar] [CrossRef]
- Tvergaard, V. On fatigue crack growth in ductile materials by crack–tip blunting. J. Mech. Phys. Solids 2004, 52, 2149–2166. [Google Scholar] [CrossRef]
- Pippan, R.; Grosinger, W. Fatigue crack closure: From LCF to small scale yielding. Int. J. Fatigue 2013, 46, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Vasco-Olmo, J.M.; Díaz, F.A.; Antunes, F.A.; James, M.N. Plastic CTOD as fatigue crack growth characterising parameter in 2024-T3 and 7050-T6 aluminium alloys using DIC. Fatigue Fract. Eng. Mater. Struct. 2020, 1–12. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch. Comput. Meth. Eng. 2008, 15, 113–162. [Google Scholar] [CrossRef] [Green Version]
- Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Prates, P.A.; Adaixo, A.S.; Oliveira, M.C.; Fernandes, J.V. Numerical study on the effect of mechanical properties variability in sheet metal forming processes. Int. J. Adv. Manuf. Technol. 2018, 96, 561–580. [Google Scholar] [CrossRef]
- Lasdon, L.S.; Waren, A.D.; Jain, A.; Ratner, M.W. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Optimization; NTIS National Technical Information Service, U.S. Department of Commerce: Cleveland, OH, USA, 1975. [Google Scholar]
- Bonte, M.H.A. Optimisation Strategies for Metal Forming Processes. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2007. [Google Scholar]
AA7050-T6 | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
µ | 71.70 | 0.3300 | 420.50 | 228.91 | 198.35 | 385.29 | 19.26 |
SD | 3.59 | 0.0165 | 21.03 | 11.45 | 9.92 | 19.26 | 0.96 |
P2.5 | 64.67 | 0.2977 | 379.29 | 206.48 | 178.91 | 347.53 | 17.37 |
P97.5 | 78.73 | 0.3623 | 461.71 | 251.34 | 217.79 | 423.05 | 21.15 |
Simulation | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) | δp (µm) |
---|---|---|---|---|---|---|---|---|
1 | µ | µ | µ | µ | µ | µ | µ | 0.334 |
2 | P2.5 | µ | µ | µ | µ | µ | µ | 0.364 |
3 | P97.5 | µ | µ | µ | µ | µ | µ | 0.304 |
4 | µ | P2.5 | µ | µ | µ | µ | µ | 0.340 |
5 | µ | P97.5 | µ | µ | µ | µ | µ | 0.326 |
6 | µ | µ | P2.5 | µ | µ | µ | µ | 0.379 |
7 | µ | µ | P97.5 | µ | µ | µ | µ | 0.303 |
8 | µ | µ | µ | P2.5 | µ | µ | µ | 0.337 |
9 | µ | µ | µ | P97.5 | µ | µ | µ | 0.326 |
10 | µ | µ | µ | µ | P2.5 | µ | µ | 0.341 |
11 | µ | µ | µ | µ | P97.5 | µ | µ | 0.322 |
12 | µ | µ | µ | µ | µ | P2.5 | µ | 0.264 |
13 | µ | µ | µ | µ | µ | P97.5 | µ | 0.421 |
14 | µ | µ | µ | µ | µ | µ | P2.5 | 0.335 |
15 | µ | µ | µ | µ | µ | µ | P97.5 | 0.333 |
Simulation | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) | δp (µm) |
---|---|---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | 0.346 |
2 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | 0.273 |
3 | P2.5 | P97.5 | P2.5 | P2.5 | P97.5 | P97.5 | P2.5 | 0.529 |
4 | P97.5 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | P97.5 | 0.499 |
5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | P97.5 | 0.418 |
6 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | P97.5 | P2.5 | 0.366 |
7 | P2.5 | P97.5 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | 0.269 |
8 | P97.5 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | 0.220 |
9 | P2.5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | 0.561 |
10 | P97.5 | P2.5 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | 0.425 |
11 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | P2.5 | P97.5 | 0.492 |
12 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | P2.5 | 0.270 |
13 | P2.5 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | P2.5 | 0.273 |
14 | P97.5 | P2.5 | P97.5 | P97.5 | P2.5 | P2.5 | P97.5 | 0.232 |
15 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | 0.421 |
16 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | 0.324 |
OFAT | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
Main Effect | 0.0598 | 0.0133 | 0.0752 | 0.0109 | 0.0192 | 0.1561 | 0.0016 |
Index of Influence | 0.0895 | 0.0199 | 0.1125 | 0.0164 | 0.0287 | 0.2335 | 0.0024 |
ANOVA p-value | 0.0010 | 0.2309 | 0.0003 | 0.3144 | 0.1020 | 0.0000 | 0.8778 |
FFD | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
Main Effect | 0.0874 | 0.0162 | 0.1087 | 0.0101 | 0.0014 | 0.1460 | 0.0270 |
Index of Influence | 0.1182 | 0.0219 | 0.1469 | 0.0136 | 0.0020 | 0.1974 | 0.0365 |
ANOVA p-value | 0.0087 | 0.5039 | 0.0031 | 0.6751 | 0.9516 | 0.0007 | 0.2815 |
RSM Coefficients | Face-Centered Central Composite Design | Box-Behnken Design |
---|---|---|
β0 | 3.061 × 100 | 1.814 × 10−1 |
β1 | −3.124 × 10−2 | −6.938 × 10−2 |
β2 | −6.633 × 10−3 | −7.472 × 10−4 |
β3 | −1.783 × 10−3 | 2.630 × 10−3 |
β4 | 3.220 × 10−5 | 9.827 × 10−6 |
β5 | −7.202 × 10−6 | −3.067 × 10−5 |
β6 | −6.909 × 10−6 | −1.082 × 10−5 |
β7 | 1.158 × 10−4 | 7.009 × 10−5 |
β8 | 7.281 × 10−6 | 3.872 × 10−6 |
β9 | 9.765 × 10−6 | 8.157 × 10−6 |
Simulation | E (GPa) | Y0 (MPa) | Fmax (N) | δp (µm) | δpRSM (µm) | |
---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | P2.5 | 0.323 | 0.334 | R2 = 0.9927 RRMSE = 2.0% |
2 | P97.5 | P2.5 | P2.5 | 0.270 | 0.264 | |
3 | P2.5 | P97.5 | P2.5 | 0.271 | 0.265 | |
4 | P97.5 | P97.5 | P2.5 | 0.225 | 0.233 | |
5 | P2.5 | P2.5 | P97.5 | 0.543 | 0.534 | |
6 | P97.5 | P2.5 | P97.5 | 0.452 | 0.457 | |
7 | P2.5 | P97.5 | P97.5 | 0.418 | 0.423 | |
8 | P97.5 | P97.5 | P97.5 | 0.395 | 0.383 | |
9 | P2.5 | µ | µ | 0.364 | 0.363 | |
10 | P97.5 | µ | µ | 0.304 | 0.308 | |
11 | µ | P2.5 | µ | 0.379 | 0.378 | |
12 | µ | P97.5 | µ | 0.303 | 0.307 | |
13 | µ | µ | P2.5 | 0.264 | 0.256 | |
14 | µ | µ | P97.5 | 0.421 | 0.431 | |
15 | µ | µ | µ | 0.334 | 0.330 |
Simulation | E (GPa) | Y0 (MPa) | Fmax (N) | δp (µm) | δpRSM (µm) | |
---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | µ | 0.417 | 0.419 | R2 = 0.9996 RRMSE = 0.4% |
2 | P97.5 | P2.5 | µ | 0.348 | 0.349 | |
3 | P2.5 | P97.5 | µ | 0.335 | 0.334 | |
4 | P97.5 | P97.5 | µ | 0.277 | 0.276 | |
5 | P2.5 | µ | P2.5 | 0.293 | 0.292 | |
6 | P97.5 | µ | P2.5 | 0.244 | 0.244 | |
7 | P2.5 | µ | P97.5 | 0.471 | 0.471 | |
8 | P97.5 | µ | P97.5 | 0.389 | 0.391 | |
9 | µ | P2.5 | P2.5 | 0.294 | 0.293 | |
10 | µ | P97.5 | P2.5 | 0.246 | 0.248 | |
11 | µ | P2.5 | P97.5 | 0.493 | 0.490 | |
12 | µ | P97.5 | P97.5 | 0.378 | 0.378 | |
13 | µ | µ | µ | 0.334 | 0.334 |
δp | FCCCD-Based Model | BBD-Based Model |
---|---|---|
Mean value, µ | 0.338 µm | 0.340 µm |
Standard deviation, SD | 0.050 µm | 0.049 µm |
Coefficient of variation, CV | 14.9% | 14.5% |
2.5th percentile, P2.5 | 0.252 µm | 0.257 µm |
97.5th percentile, P97.5 | 0.448 µm | 0.448 µm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
André Prates, P.; Eusébio Marques, A.; Frias Borges, M.; Madeira Branco, R.; Antunes, F.V. Numerical Study on the Variability of Plastic CTOD. Materials 2020, 13, 1276. https://doi.org/10.3390/ma13061276
André Prates P, Eusébio Marques A, Frias Borges M, Madeira Branco R, Antunes FV. Numerical Study on the Variability of Plastic CTOD. Materials. 2020; 13(6):1276. https://doi.org/10.3390/ma13061276
Chicago/Turabian StyleAndré Prates, Pedro, Armando Eusébio Marques, Micael Frias Borges, Ricardo Madeira Branco, and Fernando Ventura Antunes. 2020. "Numerical Study on the Variability of Plastic CTOD" Materials 13, no. 6: 1276. https://doi.org/10.3390/ma13061276
APA StyleAndré Prates, P., Eusébio Marques, A., Frias Borges, M., Madeira Branco, R., & Antunes, F. V. (2020). Numerical Study on the Variability of Plastic CTOD. Materials, 13(6), 1276. https://doi.org/10.3390/ma13061276