Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tuna Skin Gelatin (TSG)
2.2. Preparation of Gellan Gum and GEL/TSG
2.3. MTT Assay of GEL/TSG
2.4. Animal Experiment
2.5. Micro-Computed Tomography (Micro-CT) Analysis
2.6. Histological Evaluation of Samples
3. Results
3.1. MTT Assay
3.2. Micro-CT Analysis
3.3. Histologic Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mao, J.J.; Giannobile, W.V.; Helms, J.A.; Hollister, S.J.; Krebsbach, P.H.; Longaker, M.T.; Shi, S. Craniofacial tissue engineering by stem cells. J. Dent. Res. 2006, 85, 966–979. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mat. Sci. Eng. C Mater. 2017, 78, 1246–1262. [Google Scholar] [CrossRef]
- Tevlin, R.; McArdle, A.; Atashroo, D.; Walmsley, G.G.; Senarath-Yapa, K.; Zielins, E.R.; Paik, K.J.; Longaker, M.T.; Wan, D.C. Biomaterials for craniofacial bone engineering. J. Dent. Res. 2014, 93, 1187–1195. [Google Scholar] [CrossRef]
- Rakhmatia, Y.D.; Ayukawa, Y.; Furuhashi, A.; Koyano, K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013, 57, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Mui, B.; Mehrabzadeh, M.; Chea, Y.; Chaudhry, Z.; Chaudhry, K.; Tran, S.D. Regeneration of tissues of the oral complex: Current clinical trends and research advances. J. Can. Dent. Assoc. 2013, 79, 1. [Google Scholar]
- Moses, O.; Vitrial, D.; Aboodi, G.; Sculean, A.; Tal, H.; Kozlovsky, A.; Artzi, Z.; Weinreb, M.; Nemcovsky, C.E. Biodegradation of three different collagen membranes in the rat calvarium: A comparative study. J. Periodontol. 2008, 79, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.S.; Veeder, G.T.; Mirrasoul, P.J.; Kaneko, T.; Cottrell, I.W. Agar-like polysaccharide produced by a pseudomonas species: Production and basic properties. Appl. Environ. Microbiol. 1982, 43, 1086–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osmalek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014, 466, 328–340. [Google Scholar] [CrossRef]
- Pereira, D.R.; Canadas, R.F.; Silva-Correia, J.; Marques, A.P.; Reis, R.L.; Oliveira, J.M. Gellan Gum-Based Hydrogel Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Eng. Mater. 2014, 587, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Cencetti, C.; Bellini, D.; Pavesio, A.; Senigaglia, D.; Passariello, C.; Virga, A.; Matricardi, P. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohydr. Polym. 2012, 90, 1362–1370. [Google Scholar] [CrossRef]
- Mohd, S.S.; Abdullah, M.A.A.; Mat Amin, K.A. Gellan gum/clay hydrogels for tissue engineering application: Mechanical, thermal behavior, cell viability, and antibacterial properties. J. Bioact. Compat. Pol. 2016, 31, 648–666. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Custódio, C.A.; Gasperini, L.; Reis, R.L.; Mano, J.F. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater. 2016, 41, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-J.; Kuo, S.-M.; Liu, W.-T.; Niu, C.-C.G.; Lee, M.-W.; Wu, C.-S. Gellan gum films for effective guided bone regeneration. J. Med. Biol. Eng. 2010, 30, 99–103. [Google Scholar]
- Barbani, N.; Guerra, G.D.; Cristallini, C.; Urciuoli, P.; Avvisati, R.; Sala, A.; Rosellini, E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J. Mater. Sci. Mater. M 2012, 23, 51–61. [Google Scholar] [CrossRef]
- Lee, M.W.; Hung, C.L.; Cheng, J.C.; Wang, Y.J. A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide crosslinker. Biomaterials 2005, 26, 3793–3799. [Google Scholar] [CrossRef]
- Ferris, C.J.; Gilmore, K.J.; Wallace, G.G.; Panhuis, M.I.H. Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 2013, 9, 3705–3711. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, J.T.; Gering, C.; Karvinen, J.; Maria Cherian, R.; Belay, B.; Hyttinen, J.; Aalto-Setala, K.; Kellomaki, M.; Parraga, J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS Appl. Mater. Interfaces 2019, 11, 20589–20602. [Google Scholar] [CrossRef] [Green Version]
- Giménez, B.; Gómez-Guillén, M.C.; Montero, P. Storage of dried fish skins on quality characteristics of extracted gelatin. Food Hydrocoll. 2005, 19, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Karayannakidis, P.D.; Zotos, A. Fish processing by-products as a potential source of gelatin: A review. J. Aquat. Food Prod. 2016, 25, 65–92. [Google Scholar] [CrossRef]
- Cho, S.M.; Gu, Y.S.; Kim, S.B. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocoll. 2005, 19, 221–229. [Google Scholar] [CrossRef]
- Chang, S.J.; Huang, Y.-T.; Yang, S.-C.; Kuo, S.-M.; Lee, M.-W. In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr. Polym. 2012, 88, 684–689. [Google Scholar] [CrossRef]
- Wang, C.; Gong, Y.; Lin, Y.; Shen, J.; Wang, D.A. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater. 2008, 4, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ortiz, O.; Goyal, R.; Kohn, J. Chapter 23—Biodegradable Polymers. In Principles of Tissue Engineering, 4th ed.; Lanza, R., Langer, R., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 441–473. [Google Scholar]
- Lee, M.J.; Jeong, N.H. Preparation and Availability Analysis of Collagen Peptides Obtained in Fish Scale. J. Korean Appl. Chem. Soc. 2009, 26, 457–466. [Google Scholar]
- Lee, K.Y.; Kim, J.; Lim, T.J.; Jang, J.W.; Shin, J.W.; Jeong, C.W. Adhesive comprising extract of Yellowfin Tuna. South Korea Patent KR101702637B1, 6 February 2017. [Google Scholar]
- Donos, N.; Dereka, X.; Mardas, N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol. 2000 2015, 68, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulos, L.; Karring, T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin. Oral Implant. Res. 1994, 5, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Donos, N.; Lang, N.P.; Karoussis, I.K.; Bosshardt, D.; Tonetti, M.; Kostopoulos, L. Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin. Oral Implant. Res. 2004, 15, 101–111. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.S.; Baek, W.S.; Lim, H.C.; Cha, J.K.; Choi, S.H.; Jung, U.W. Assessment of dehydrothermally cross-linked collagen membrane for guided bone regeneration around peri-implant dehiscence defects: A randomized single-blinded clinical trial. J. Periodontal Implant. Sci. 2015, 45, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Cai, Z.; Jin, Q.; Zhang, H. Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum–graphene oxide crosslinked nanohybrid building blocks. Carbon 2015, 91, 445–457. [Google Scholar] [CrossRef]
- Cencetti, C.; Bellini, D.; Longinotti, C.; Martinelli, A.; Matricardi, P. Preparation and characterization of a new gellan gum and sulphated hyaluronic acid hydrogel designed for epidural scar prevention. J. Mater. Sci. Mater. 2011, 22, 263–271. [Google Scholar] [CrossRef]
- Cerqueira, M.T.; da Silva, L.P.; Santos, T.C.; Pirraco, R.P.; Correlo, V.M.; Reis, R.L.; Marques, A.P. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl. Mater. Interface 2014, 6, 19668–19679. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.R.; da Silva, L.P.; Maia, F.R.; Pina, S.; Rodrigues, T.; Sousa, F.; Oliveira, J.M.; Cornish, J.; Correlo, V.M.; Reis, R.L. Lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering. Materials 2019, 12, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.; Lu, L.; Li, X. An interpenetrating network biohydrogel of gelatin and gellan gum by using a combination of enzymatic and ionic crosslinking approaches. Polym. Int. 2014, 63, 1643–1649. [Google Scholar] [CrossRef]
- Kirchmajer, D.M. Robust biopolymer based ionic–covalent entanglement hydrogels with reversible mechanical behaviour. J. Mater. Chem. B 2014, 2, 4694–4702. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.L. Gellan Gum/Gelatin Blends. U.S. Patent 4517216A, 14 May 1985. [Google Scholar]
- Carol, L.; Wolf, W.M.L.; Ross, C.C. Gellan Gum/Gelatin Blends. U.S. Patent 4876105A, 24 October 1989. [Google Scholar]
- Nussinovitch, A. Gellan gum. In Hydrocolloid Applications; Springer: Boston, MA, USA, 1997; pp. 63–82. [Google Scholar]
- Lau, M.; Tang, J.; Paulson, A. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res. Int. 2000, 33, 665–671. [Google Scholar] [CrossRef]
- Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 2014, 10, 672–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milovanovic, I.; Hayes, M. Marine Gelatine from rest raw materials. Appl. Sci. 2018, 8, 2407. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tian, Z.; Menard, F.; Kim, K. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication 2017, 9, 044101. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Oh, H.-K.; Kim, M.-S.; Lee, K.-Y.; Park, H.; Kook, M.-S. Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria. Materials 2020, 13, 1318. https://doi.org/10.3390/ma13061318
Jung S, Oh H-K, Kim M-S, Lee K-Y, Park H, Kook M-S. Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria. Materials. 2020; 13(6):1318. https://doi.org/10.3390/ma13061318
Chicago/Turabian StyleJung, Seunggon, Hee-Kyun Oh, Myung-Sun Kim, Ki-Young Lee, Hongju Park, and Min-Suk Kook. 2020. "Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria" Materials 13, no. 6: 1318. https://doi.org/10.3390/ma13061318
APA StyleJung, S., Oh, H. -K., Kim, M. -S., Lee, K. -Y., Park, H., & Kook, M. -S. (2020). Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria. Materials, 13(6), 1318. https://doi.org/10.3390/ma13061318