Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Synthesis and Characterization
2.2. In Vitro Biocompatibility Testing
2.3. Animal Studies
3. Results and Discussion
3.1. Synthesis and Properties of the Thermoresponsive Hydrogels
3.2. In Vitro Biocompatibility of the Formulated Hydrogels
3.3. Animal Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sakaue, H.; Negi, A.; Honda, Y. Comparative-study of Vitreous Oxygen-tension in Human and Rabbit Eyes. Investig. Ophthalmol. Vis. Sci. 1989, 30, 1933–1937. [Google Scholar]
- Swindle, K.E.; Ravi, N. Recent Advances in Polymeric Vitreous Substitutes. Expert Rev. Ophthalmol. 2007, 2, 255–265. [Google Scholar] [CrossRef]
- Alovisi, C.; Panico, C.; de Sanctis, U.; Eandi, C.M. Vitreous Substitutes: Old and New Materials in Vitreoretinal Surgery. J. Ophthalmol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, G.G.; Refojo, M.F. Silicone Oils as Vitreous Substitutes. Prog. Polym. Sci. 1998, 23, 509–532. [Google Scholar] [CrossRef]
- Grafton, E.G.; Guyton, J.S. The Value of Injecting Saline into the Vitreous as an Adjunct to Diathermy Operations for Retinal Detachment. Am. J. Ophthalmol. 1948, 31, 299–303. [Google Scholar] [CrossRef]
- Kanclerz, P.; Grzybowski, A. Complications Associated with the Use of Expandable Gases in Vitrectomy. J. Ophthalmol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Zimmerman, N.J.; Iwamoto, T.; Ortiz, R.; Faris, D. Experimental Vitreous Replacement with Perfluorotributylamine. Am. J. Ophthalmol. 1987, 103, 29–37. [Google Scholar] [CrossRef]
- Kleinberg, T.T.; Tzekov, R.T.; Stein, L.; Ravi, N.; Kaushal, S. Vitreous Substitutes: A Comprehensive Review. Surv. Ophthalmol. 2011, 56, 300–323. [Google Scholar] [CrossRef]
- Donati, S.; Caprani, S.; Airaghi, G.; Vinciguerra, R.; Bartalena, L.; Testa, F.; Mariotti, C.; Porta, G.; Simonelli, F.; Azzolini, C. Vitreous Substitutes: The Present and the Future. Biomed Res. Int. 2014. [Google Scholar] [CrossRef]
- Szurman, P. Vitreous Substitute in Retinal Detachment Surgery—Why We Need a New Tamponade Strategy. Klin. Monatsbl. 2017, 234, 1094–1102. [Google Scholar] [CrossRef]
- Ko, D.Y.; Shinde, U.P.; Yeon, B.; Jeong, B. Recent Progress of In Situ Formed Gels for Biomedical Applications. Prog. Polym. Sci. 2013, 38, 672–701. [Google Scholar] [CrossRef]
- Yu, L.; Ding, J.D. Injectable Hydrogels as Unique Biomedical Materials. Chem. Soc. Rev. 2008, 37, 1473–1481. [Google Scholar] [CrossRef]
- Liang, J.; Karakocak, B.; Struckhoff, J.; Ravi, N. Synthesis and Characterization of Injectable Sulfonate-Containing Hydrogels. Biomacromolecules 2016, 17, 4064–4074. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Tanaka, M.; Miyata, T. Evaluation of Collagen Gel and Hyaluronic Acid as Vitreous Substitutes. Ophthalmic Res. 1997, 29, 409–420. [Google Scholar] [CrossRef]
- Hong, Y.; Chirila, T.V.; Vijayasekaran, S.; Shen, W.Y.; Lou, X.; Dalton, P.D. Biodegradation In Vitro and Retention in the Rabbit Crosslinked Poly(1-vinyl-2-pyrrolidinone) Hydrogel as a Vitreous Substitute. J. Biomed. Mater. Res. 1998, 39, 650–659. [Google Scholar] [CrossRef]
- Suri, S.; Banerjee, R. In Vitro Evaluation of In Situ Gels as Short Term Vitreous Substitutes. J. Biomed.l Mater. Res. A. 2006, 79A, 650–664. [Google Scholar] [CrossRef]
- Su, W.Y.; Chen, K.H.; Chen, Y.C.; Lee, Y.H.; Tseng, C.L.; Lin, F.H. An Injectable Oxidated Hyaluronic Acid/Adipic Acid Dihydrazide Hydrogel as a Vitreous Substitute. J. Biomater. Sci. Polym. Ed. 2011, 22, 1777–1797. [Google Scholar] [CrossRef]
- Tortora, M.; Cavalieri, F.; Chiessi, E.; Paradossi, G. Michael-type Addition Reactions for the In Situ Formation of Poly(Vinyl Alcohol)-based Hydrogels. Biomacromolecules 2007, 8, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Annaka, M.; Mortensen, K.; Vigild, M.E.; Matsuura, T.; Tsuji, S.; Ueda, T.; Tsujinaka, H. Design of an Injectable in Situ Gelation Biomaterials for Vitreous Substitute. Biomacromolecules 2011, 12, 4011–4021. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Tao, Y.; Wang, B.; Guo, B.H.; Xu, H.; Jiang, Y.R.; Huang, Y.B. An In Situ-forming Zwitterionic Hydrogel as Vitreous Substitute. J. Mater. Chem. B 2015, 3, 1097–1105. [Google Scholar] [CrossRef]
- Tao, Y.; Tong, X.M.; Zhang, Y.; Lai, J.J.; Huang, Y.B.; Jiang, Y.R.; Guo, B.H. Evaluation of an In Situ Chemically Crosslinked Hydrogel as a Long-Term Vitreous Substitute Material. Acta Biomater. 2013, 9, 5022–5030. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Tan, M.; Li, Z.; Wong, M.; Rajamani, L.; Lingam, G.; Loh, X. Recent Progress in Using Biomaterials as Vitreous Substitutes. Biomacromolecules 2015, 16, 3093–3102. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging Applications of Stimuli-responsive Polymer Materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Davidorf, F.H.; Chambers, R.B.; Kwon, O.W.; Doyle, W.; Gresak, P.; Frank, S.G. Ocular Toxicity of Vitreal Pluronic Polyol F-127. Retina J. Ret. Vit. Dis. 1990, 10, 297–300. [Google Scholar] [CrossRef]
- Katagiri, Y.; Iwasaki, T.; Ishikawa, T.; Yamakawa, N.; Suzuki, H.; Usui, M. Application of Thermo-Setting Gel as Artificial Vitreous. Jpn. J. Ophthalmol. 2005, 49, 491–496. [Google Scholar] [CrossRef]
- Du, H.; Hamilton, P.; Reilly, M.; Ravi, N. Injectable in situ Physically and Chemically Crosslinkable Gellan Hydrogel. Macromol. Biosci. 2012, 12, 952–961. [Google Scholar] [CrossRef]
- Thannhauser, T.W.; Konishi, Y.; Scheraga, H.A. Analysis for Disulfide Bonds in Peptides and Proteins. Methods Enzymol. 1987, 143, 115–119. [Google Scholar] [CrossRef]
- Liang, J.; Struckhoff, J.; Du, H.; Hamilton, P.; Ravi, N. Synthesis and Characterization of In Situ Forming Anionic Hydrogel as Vitreous Substitutes. J. Biomed. Mater. Res. B 2017, 105, 977–988. [Google Scholar] [CrossRef]
- Santhanam, S.; Liang, J.; Struckhoff, J.; Hamilton, P.; Ravi, N. Biomimetic Hydrogel with Tunable Mechanical Properties for Vitreous Substitutes. Acta Biomater. 2016, 43, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Karakocak, B.B.; Liang, J.; Biswas, P.; Ravi, N. Hyaluronate Coating Enhances the Delivery and Biocompatibility of Gold Nanoparticles. Carbohydr. Polym. 2018, 186, 243–251. [Google Scholar] [CrossRef]
- Santhanam, S.; Shui, Y.-B.; Struckhoff, J.; Karakocak, B.B.; Hamilton, P.D.; Harocopos, G.J.; Ravi, N. Bioinspired Fibrillary Hydrogel with Controlled Swelling Behavior: Applicability as an Artificial Vitreous. ACS Appl. Bio Mater. 2018, 2, 11. [Google Scholar] [CrossRef]
- Zimmerman, R.L. In Vivo Measurements of the Viscoelasticity of the Human Vitreous-Humor. Biophys. J. 1980, 29, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Litt, M.; Buchsbaum, G. Rheology of the Vitreous Body 1. Viscoelasticity of Human Vitreous. Biorheology 1992, 29, 521–533. [Google Scholar] [CrossRef]
- Swindle, K.E.; Hamilton, P.D.; Ravi, N. In Situ Formation of Hydrogels as Vitreous Substitutes: Viscoelastic Comparison to Porcine Vitreous. J. Biomed. Mater. Res. A 2008, 87A, 656–665. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laradji, A.; Shui, Y.-B.; Karakocak, B.B.; Evans, L.; Hamilton, P.; Ravi, N. Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies. Materials 2020, 13, 1337. https://doi.org/10.3390/ma13061337
Laradji A, Shui Y-B, Karakocak BB, Evans L, Hamilton P, Ravi N. Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies. Materials. 2020; 13(6):1337. https://doi.org/10.3390/ma13061337
Chicago/Turabian StyleLaradji, Amine, Ying-Bo Shui, Bedia Begum Karakocak, Lynn Evans, Paul Hamilton, and Nathan Ravi. 2020. "Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies" Materials 13, no. 6: 1337. https://doi.org/10.3390/ma13061337
APA StyleLaradji, A., Shui, Y. -B., Karakocak, B. B., Evans, L., Hamilton, P., & Ravi, N. (2020). Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies. Materials, 13(6), 1337. https://doi.org/10.3390/ma13061337