Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance
Abstract
:1. Introduction
2. Methods and Verification
2.1. Physical Mathematical Model
2.2. Analytical Solution
2.3. Comparison of Analytical and Numerical Solutions
2.4. Simultaneous Estimation of Thermophysical Parameters
3. Experimental Measurement
3.1. Experimental System
3.2. Experimental Verification
3.3. Experimental Measurement at High Temperatures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
α | thermal diffusivity (m2·s−1) |
a | half-length of heat source (m) |
b | half-length of sample (m) |
λ | thermal conductivity (W·m−1·K−1) |
c | special heat capacity (J·kg−1·K−1) |
q | half heat flux density in the element (W·m−2) |
T0 | initial temperature of the system (K) |
θ | Laplace transform of temperature |
ρcp | volumetric heat capacity (J·m−3·K−1) |
p | Laplace parameter of t |
X+ | sensitivity coefficient |
hc | thermal contact conductance |
D | the deep of heat transfer (m) |
ρ | density (kg·m−3) |
x | the direction of X |
y | the direction of Y |
z | the direction of Z |
References
- Singhal, V.; Litke, P.J.; Black, A.F.; Garimella, S.V. An experimentally validated thermo-mechanical model for the prediction of thermal contact conductance. Int. J. Heat Mass Transf. 2005, 48, 5446–5459. [Google Scholar] [CrossRef] [Green Version]
- Gou, J.J.; Ren, X.J.; Dai, Y.J. Study of thermal contact resistance of rough surfaces based on the practical topography. Comput. Fluids 2016, 164, 2–11, S0045793016302869. [Google Scholar] [CrossRef]
- Zhang, P.; Cui, T.; Li, Q. Effect of Surface Roughness on Thermal Contact Resistance ofAluminium Alloy. Appl. Therm. Eng. 2017, 121, 992–998, S1359431117301217. [Google Scholar] [CrossRef]
- Garnier, B.; Pierrat, D.; Dannes, F. Distribution of size and shape of asperities effect on thermal contactresistance. Revuede Metall. Cahirs Deform. Tech. 2000, 97, 263–269. [Google Scholar]
- Schneider, D.A. Prediction of thermal contact resistance between polished surfaces. Int. J. Heat Mass Transf. 1998, 41, 3469–3482. [Google Scholar]
- Bi, D.; Chen, H.; Ye, T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics 2012, 52, 403–409. [Google Scholar] [CrossRef]
- Fenech, H.; Rohsenow, W.M. Prediction of Thermal Conductance of Metallic Surfaces in Contact. Trans. ASME J. Heat Transf. 1963, 85, 15–24. [Google Scholar] [CrossRef]
- Sridhar, M.; Yovanovich, M. Critical Review of Elastic and Plastic Thermal Contact Conductance Models and Comparison with Experiment. AIAA 1976, 9, 3–16. [Google Scholar]
- Fang, W.Z.; Gou, J.J.; Chen, L. A Multi-block Lattice Boltzmann Method for the Thermal Contact Resistance at the Interface of Two Solids. Appl. Therm. Eng. 2018, 138, 122–132, S1359431117362191. [Google Scholar] [CrossRef]
- Cooper, M.G.; Mikic, B.B.; Yovanovich, M.M. Thermal Contact Conductance. Int. J. Heat Mass Transfer. 1969, 12, 279–300. [Google Scholar] [CrossRef]
- Prajapati, H.; Ravoori, D.; Woods, R.L.; Jain, A. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit. Manuf. 2018, 21, 84–90, S2214860417305456. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, P.; Wang, H. Experimental study of thermal contact resistance between aluminium alloy and ADP crystal under vacuum environment. Appl. Therm. Eng. 2019, 155, 563–574. [Google Scholar] [CrossRef]
- Kanjanakijkasem, W. Estimation of spatially varying thermal contact resistance from finite element solutions of boundary inverse heat conduction problems split along material interface. Appl. Therm. Eng. 2016, 106, 731–742. [Google Scholar] [CrossRef]
- Renxi, L.; Xiaogang, L.; Qingyun, T. The thermal contact resistance testing method study of thin film materials. In Proceedings of the 2015 Prognostics and System Health Management Conference (PHM), Beijing, China, 21–23 October 2015. IEEE. [Google Scholar]
- Liu, D.; Luo, Y.; Shang, X. Experimental investigation of high temperature thermal contact resistance between high thermal conductivity C/C material and Inconel 600. Int. J. Heat Mass Transf. 2015, 80, 407–410. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, P.; Zhai, S.; Yuan, P.; Yang, D. Experimental characterization methods for thermal contact resistance: A review. Appl. Therm. Eng. 2018, 130, 1530–1548. [Google Scholar] [CrossRef]
- Zhang, P.; Xuan, Y.M.; Li, Q. A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux. Exp. Therm. Fluid Sci. 2014, 54, 204–211. [Google Scholar] [CrossRef]
- Fieberg, C.; Kneer, R. Determination of thermal contact resistance from transient temperature measurements. Int. J. Heat Mass Transf. 2008, 51, 1017–1023. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, X.; Li, Z. Simultaneous retrieval of high temperature thermal conductivities, anisotropic radiative properties, and thermal contact resistance for ceramic foams. Appl. Therm. Eng. 2019, 146, 569–576. [Google Scholar] [CrossRef]
- Li Q, Y.; Katakami, K.; Ikuta, T. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon 2019, 141, 92–98. [Google Scholar] [CrossRef]
- Mizuhara, K.; Ozawa, N. Estimation of Thermal Contact Resistance Based on Electric Contact Resistance Measurements. Int. J. Jpn. Soc. Precis. Eng. 1999, 33, 59–61. [Google Scholar]
- Hohenauer, W.; Vozar, L. An Estimation of Thermophysical Properties of Layered Materials by the Laser-Flashed Method. High Temp. High Press 1976, 33, 17–25. [Google Scholar] [CrossRef]
- Ahadi, M.; Andisheh-Tadbir, M.; Tam, M. An improved transient plane source method for measuring thermal conductivity of thin films: Deconvoluting thermal contact resistance. Int. J. Heat Mass Transf. 2016, 96, 371–380. [Google Scholar] [CrossRef]
- Shilang, X.; Jiahan, L.; Qiang, Z. Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size. Mater. Des. 2018, 157, 105–118. [Google Scholar]
- Wenlong, C.; Ran, M.A.; Na, L. Study on thermalproperty measurement method considering thermal contact resistance of the thermal probe. J. Univ. Sci. Technol. China 2010, 40, 734–738. [Google Scholar]
- Dongmei, B. Measurement of thermal diffusivity/thermal contact resistance using laser photothermal method at cryogenic temperatures. Appl. Therm. Eng. 2017, 111, 768–775. [Google Scholar] [CrossRef]
- Liang, C.; Kai, Y.; Jun, W. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials. Meas. Sci. Technol. 2017, 28, 075002. [Google Scholar]
- Jannot, Y.; Meukam, P. Simplified estimation method for the determination of the thermal effusivity and thermal conductivity using a low cost hot strip. Meas. Sci. Technol. 2004, 15, 1932–1938. [Google Scholar] [CrossRef] [Green Version]
- James, V.; Kenneth, J. Parameter Estimation in Engineering & Science. Int. Stat. Rev. 1977, 73, 363–378. [Google Scholar]
- Hartley, H.O. The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression Functions by Least Squares. Technometrics 1961, 3, 269–280. [Google Scholar] [CrossRef]
Parameters | Isotropic Material | Anisotropic Materials |
---|---|---|
λz (W·m−1·K−1) | 0.4 | 0.2 |
λx = λy (W·m−1·K−1) | 0.4 | 0.4 |
q (W·m−2) | 80 | 80 |
b (m) | 0.05 | 0.05 |
ρcp (J·m−3·k−1) | 1,599,750 | 1,500,000 |
a (m) | 0.02 | 0.02 |
t (s) | 200 | 200 |
hc (W·m−2·K−1) | 150 | 150 |
Coordinates (x,y,z) (m) | (0,0,0.005) | (0,0,0.005) |
Sample | (W·m−1·K−1) | (W·m−1·K−1) | (W·m−2·K−1) | (J∙m−3∙K−1) |
---|---|---|---|---|
A | 0.0334 ± 0.0001 | 0.0452 ± 0.0004 | 173.0 ± 1.665 | 1.595 ± 0.0011 |
B | 0.0528 ± 0.0012 | 0.156 ± 0.00473 | 122.9 ± 1.967 | 3.033 ± 0.0484 |
T (°C) | P (kPa) | Thermal Contact Conductivity (W·m−2·K−1) ± SD | ||
---|---|---|---|---|
Proposed Method | Steady-State Method | Deviation (%) | ||
200 | 2 | 94.1 ± 0.35 | 102.1 ± 0.45 | 8.5 |
5 | 98.5 ± 0.42 | 105.8 ± 0.36 | 7.4 | |
8 | 102.4 ± 0.25 | 110.7 ± 0.21 | 8.1 | |
300 | 2 | 97.3 ± 0.46 | 104.4 ± 0.71 | 7.3 |
5 | 101.9 ± 0.42 | 108.8 ± 0.43 | 6.8 | |
8 | 104.8 ± 0.38 | 112.7 ± 0.58 | 7.5 | |
400 | 2 | 99.2 ± 0.57 | 105.5 ± 0.65 | 6.4 |
5 | 105.7 ± 0.55 | 112.9 ± 0.54 | 6.8 | |
8 | 108.9 ± 0.43 | 116.6 ± 0.32 | 7.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Yue, K.; Cheng, L.; Yang, X.; Zhang, X. Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance. Materials 2020, 13, 1353. https://doi.org/10.3390/ma13061353
Han D, Yue K, Cheng L, Yang X, Zhang X. Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance. Materials. 2020; 13(6):1353. https://doi.org/10.3390/ma13061353
Chicago/Turabian StyleHan, Dongxu, Kai Yue, Liang Cheng, Xuri Yang, and Xinxin Zhang. 2020. "Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance" Materials 13, no. 6: 1353. https://doi.org/10.3390/ma13061353
APA StyleHan, D., Yue, K., Cheng, L., Yang, X., & Zhang, X. (2020). Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance. Materials, 13(6), 1353. https://doi.org/10.3390/ma13061353