Design of High Temperature Complex Dielectric Properties Measuring System Based on XGBoost Algorithm
Abstract
:1. Introduction
2. System Design
3. Methodology
3.1. Samples Generation
3.2. Algorithm Model Construction
3.3. System Calibration
4. Measured Results and Discussion
4.1. Room Temperature Measurement
4.2. High Temperature Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, X.; Ebadi, S.; Chen, Y.; An, L.; Gong, X. Characterization of SiCN ceramic material dielectric properties at high temperatures for harsh environment sensing applications. IEEE Trans. Microw. Theory Tech. 2012, 61, 960–971. [Google Scholar] [CrossRef]
- Garcia-Baños, B.; Catalá-Civera, J.M.; Peñaranda-Foix, F.L.; Plaza-González, P.; Llorens-Vallés, G. In situ monitoring of microwave processing of materials at high temperatures through dielectric properties measurement. Materials 2016, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Fang, L.; Liu, L.; Hu, C.; Chen, X.; Zhou, H. Dielectric properties and high-temperature dielectric relaxation of tungsten-bronze structure ceramics Ba2GdFeNbTa3O15. J. Mater. Sci. Mater. El. 2012, 23, 229–233. [Google Scholar] [CrossRef]
- Wen, G.; Wu, G.L.; Lei, T.Q.; Zhou, Y.; Guo, Z.X. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J. Eur. Ceram. Soc. 2000, 20, 1923–1928. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Zhang, C.; Wu, X.; Cai, W.; Peng, S.; Bo, H.; Kan, Y.; Huang, F.; Zhu, J. Oxygen-vacancy-related high-temperature dielectric relaxation in SrTiO3 ceramics. J. Appl. Phys. 2010, 107, 114101. [Google Scholar] [CrossRef]
- Chandran, M.; Bogdan Neculaes, V.; Brisco, D.; Katz, S.; Schoonover, J.; Cretegny, L. Experimental and numerical studies of microwave power redistribution during thermal runaway. J. Appl. Phys. 2013, 114, 204904. [Google Scholar] [CrossRef]
- Arai, M.; Binner, J.G.P.; Cross, T.E. Comparison of techniques for measuring high-temperature microwave complex permittivity: Measurements on an Alumina/Zircona system. J. Microw. Power. Energy 1996, 31, 12–18. [Google Scholar] [CrossRef]
- Singh, M.; Ohji, T.; Dong, S.; Koch, D.; Shimamura, K.; Clauss, B.; Heidenreich, B.; Akedo, J. Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- McCann, G.; Strezov, V.; Lucas, J.A.; Evans, T.; Strezov, L. Iron ore characterisation during high temperature thermal processing. Dev. Chem. Eng. Mich. 2004, 12, 369–382. [Google Scholar] [CrossRef]
- Rodriguez, L.A.; García, C.; Grace, L.R. The effect of in-service aerospace contaminants on X-band dielectric properties of a bismaleimide/quartz composite. In Proceedings of the PPS-30: The 30th International Conference of the Polymer Processing Society—Conference Papers, Cleveland, OH, USA, 6–12 June 2014. [Google Scholar]
- Fasenfest, K.D. Design and characteristic mode analysis of a wideband high permittivity patch antenna. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015. [Google Scholar]
- Pilania, G.; Wang, C.C.; Wu, K.; Sukumar, N.; Breneman, C.; Sotzing, G.; Ramprasad, R. New group IV chemical motifs for improved dielectric permittivity of polyethylene. J. Chem. Inf. Model. 2013, 53, 879–886. [Google Scholar] [CrossRef]
- Cao, M.S.; Song, W.L.; Hou, Z.L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Bukhari, M.H.; Batool, S.; Raza, D.Y.; Bagasra, O.; Rizvi, A.; Shah, A.; Razzaki, T.; Sultan, T. DNA electromagnetic properties and interactions—An investigation on intrinsic bioelectromagnetism within DNA. Electromagn. Biol. Med. 2018, 37, 169–174. [Google Scholar] [CrossRef]
- Kumar, P.; Coronel, P.; Simunovic, J.; Truong, V.D.; Sandeep, K.P. Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions. J. Food Sci. 2007, 72, E177–E183. [Google Scholar] [CrossRef]
- Fang, Y.F.; Hu, R.H.; Yang, X.Q.; Huang, K.M. Influence of Air Bubbles on the Measurement of Complex Permittivity of Electrolyte Solution. Inform. Electr. Eng. 2007, 1, 52–56. [Google Scholar]
- Hulls, P.; Shute, R. Dielectric heating in industry application of radio frequency and microwaves. IEEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 1981, 128, 583–588. [Google Scholar] [CrossRef]
- Bhuyan, R.K.; Kumar, T.S.; Pamu, D.; James, A.R. Structural and Microwave Dielectric Properties of Mg2TiO4Ceramics Synthesized by Mechanical Method. Int. J. Appl. Ceram. Technol. 2013, 10, E18–E24. [Google Scholar] [CrossRef]
- Plaksin, S.V.; Sokolovskiy, I.I.; Bistrov, N.I.; Netak, B.B.; Lavrich, Y.N.; Pogorelaya, L.M. Application of high power microwaves for heat treatment of metallurgical containers lining. In Proceedings of the 2013 23rd International Crimean Conference Microwave & Telecommunication Technology, Sevastopol, Ukraine, 8–14 September 2013. [Google Scholar]
- Samouhos, M.; Taxiarchou, M.; Kouvelos, E. Novel applications of microwaves in the metallurgical processing of a nickel-ferrous laterite ore and an aluminum industry waste. In Proceedings of the 3rd International Conference on Competitive Materials and Technology Processes (IC-CMTP3), Miskolc-Lillafüred, Hungary, 6–10 October 2014. [Google Scholar]
- Powles, J.G.; Jackson, W. The measurement of the dielectric properties of high-permittivity materials at centimetre wavelengths. Proc. IEE Part III Radio Commun. Eng. 1949, 96, 383–389. [Google Scholar] [CrossRef]
- Varadan, V.V.; Hollinger, R.D.; Ghodgaonkar, D.K.; Varadan, V.K. Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies. IEEE Trans. Instrum. Meas. 1991, 40, 842–846. [Google Scholar] [CrossRef]
- Katsuta, Y.; Nikawa, Y. Measurement of temperature dependent permittivity for thin material during microwave heating. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Betz, V.; Mittra, R. Comparison and evaluation of boundary conditions for the absorption of guided waves in an FDTD simulation. IEEE Microw. Guided Wave Lett. 1992, 2, 499–501. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Lin, Y.; Feng, R.; Li, L.; Zhao, X.; Wen, R.; Wei, N.; Yao, X.; Zhang, Y. Leaf area index estimation of spring maize with canopy hyperspectral data based on linear regression algorithm. Spectrosc. Spect. Anal. 2017, 37, 1489–1496. [Google Scholar]
- Zeng, G. Research and Design of the Property of Ridge Waveguide and Directional Coupler. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2012. (In Chinese). [Google Scholar]
- Lerman, P.M. Fitting segmented regression models by grid search. J. R. Stat. Soc. C Appl. 1980, 29, 77–84. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y. Xgboost: Extreme Gradient Boosting. Available online: https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 20 March 2020).
- Pan, B. Application of XGBoost algorithm in hourly PM2.5 concentration prediction. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Harbin, China, 8–10 December 2017. [Google Scholar]
- Povak, N.A.; Hessburg, P.F.; McDonnell, T.C.; Reynolds, K.M.; Sullivan, T.J.; Salter, R.B.; Cosby, B.J. Machine learning and linear regression models to predict catchment-level base cation weathering rates across the southern Appalachian Mountain region, USA. Water Resour. Res. 2014, 50, 2798–2814. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Wang, F.; Ma, W.; Xie, T.; Huang, K. An On-Line System for High Temperature Dielectric Property Measurement of Microwave-Assisted Sintering Materials. Materials 2019, 12, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, S.O.; Trabelsi, S. Dielectric properties of agricultural products and applications. Res. Agric. Eng. 2008, 54, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Aral, M.; Binner, J.G.P.; Carr, G.E.; Cross, T.E. High temperature dielectric measurements on ceramics. In Proceedings of the Sixth International Conference on Dielectric Materials, Measurements and Applications, Manchester, UK, 7–10 September 1992. [Google Scholar]
Name | Ridge Width | Ridge Length | Ridge Height | Observation Hole Radius | Waveguide Length | Waveguide Diameter | Material Hole Radius |
---|---|---|---|---|---|---|---|
Size (mm) | 26.9 | 180 | 19.2 | 10.8 | 200 | 54.61 × 109.22 | 10 |
Max_depth | Learning_rate | Objective | N_estimator | Booster | Gamma | Lambda |
---|---|---|---|---|---|---|
6 | 0.1 | logistic | 1000 | gbtree | 0.1 | 3 |
Subsample | MSE | MAE | MSE | MAE | ||
0.7 | 0.1683 | 0.2907 | 0.9982 | 0.00101 | 0.0244 | 0.9889 |
Material | Property | Before Calibration | Ref [32] | Errors | After Calibration | Errors |
---|---|---|---|---|---|---|
methanol | 25.2 | 24.97 | 0.92% | 25.11 | 0.56% | |
14.26 | 14.48 | 1.51% | 14.32 | 1.10% | ||
ethanol | 8.28 | 8.94 | 7.38% | 8.72 | 2.46% | |
7.29 | 7.60 | 4.08% | 7.45 | 1.97% |
Media | Measured | Reference | Errors | Measured | Reference | Errors |
---|---|---|---|---|---|---|
Ethanol | 8.72 | 8.94 | 2.46% | 7.45 | 7.60 | 1.97% |
Methanol | 25.11 | 24.97 | 0.56% | 14.32 | 14.48 | 1.10% |
4 methanol + 1 ethanol | 20.75 | 21.03 | 1.33% | 13.28 | 13.04 | 1.84% |
2 methanol + 3 ethanol | 13.25 | 14.09 | 5.96% | 10.73 | 10.14 | 5.82% |
4 methanol + 1 N-butanol | 19.21 | 19.17 | 0.21% | 11.66 | 11.12 | 4.86% |
2 methanol + 3 N-butanol | 9.31 | 9.13 | 1.97% | 5.77 | 5.39 | 7.05% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, L.; Zhu, H.; Hong, T. Design of High Temperature Complex Dielectric Properties Measuring System Based on XGBoost Algorithm. Materials 2020, 13, 1419. https://doi.org/10.3390/ma13061419
Wu Y, Wu L, Zhu H, Hong T. Design of High Temperature Complex Dielectric Properties Measuring System Based on XGBoost Algorithm. Materials. 2020; 13(6):1419. https://doi.org/10.3390/ma13061419
Chicago/Turabian StyleWu, Yuanyuan, Li Wu, Huacheng Zhu, and Tao Hong. 2020. "Design of High Temperature Complex Dielectric Properties Measuring System Based on XGBoost Algorithm" Materials 13, no. 6: 1419. https://doi.org/10.3390/ma13061419
APA StyleWu, Y., Wu, L., Zhu, H., & Hong, T. (2020). Design of High Temperature Complex Dielectric Properties Measuring System Based on XGBoost Algorithm. Materials, 13(6), 1419. https://doi.org/10.3390/ma13061419