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Abstract: This paper aims to propose an online relative complex permittivity measurement system at
high temperature based on microwave interferometer. A ridge waveguide with a TE10 mode was
used in which the sample was heated and measured simultaneously at a frequency of 2450 MHz, and
the microwave interferometer is used to collect the amplitude and phase difference of the incident
signal. The Extreme Gradient Boosting (XGBoost) algorithm trained by the corresponding simulation
data is used to construct the inversion model to calculate the complex dielectric coefficient of the
tested material. Besides, this paper uses linear regression algorithm (LR) to calibrate the measurement
system in order to improve the measurement accuracy. The entire system was tested using different
materials at room temperature, and the maximum error of the measurement accuracy is less than 8%
compared to the theoretical data. The robustness of the entire system was also tested by measuring
Macor materials up to 800 ◦C. This proposed method provides an effective way to understand the
mechanism between microwaves and matter at high temperatures.
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1. Introduction

The dielectric property of material mainly relies on the frequency and temperature. In the high
power application of microwaves, the microwave frequency is usually fixed, and the interaction
between microwaves and matter at different temperature, especially high temperature, should be
investigated [1–5]. Meanwhile, in the microwave heating process, thermal runaway always happens.
Therefore, it is essential to study the complex permittivity of matter at high temperature in order to
avoid the issue of thermal runaway and guide the design of the microwave equipment [6].

The measurement of relative permittivity of materials in high temperature environment has
very important requirements in the fields of aerospace, metallurgy, and chemical industry [7–12].
The research on electromagnetic parameter measurement has also been the focus of attention in the
fields of bioelectromagnetism and materials science [13–16]. For example, when the aircraft passes
through the atmosphere, the aircraft will rub against the air, which will generate a large amount of
heat, so that the surface temperature of the radome reaches about 2400 ◦C. Therefore, when designing
the radome, it is necessary to measure the relative complex permittivity of the material of the radome
in the high temperature range to ensure that the temperature does not affect the transmission of
electromagnetic waves when the temperature rises. In addition, microwaves have also been widely
used in the metallurgical industry [17–20]. The temperature of microwave metallurgy can achieve
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microwave high-temperature sintering, calcination decomposition, reduction, and synthesis at several
thousand degrees Celsius. Therefore, in microwave metallurgy, the material needs to be in a high
temperature state. Whether to absorb the microwave to make a judgment, so accurate measurement of
the high temperature relative complex permittivity of the metallurgical material is very important for
microwave metallurgy.

In the study of high-temperature dielectric measurement, JG Powles used a rectangular waveguide
as a measuring device in the middle of the last century, connected the load at the waveguide end, and
then placed the sample under test in the test waveguide, passing the electricity in the measurement
system. The parameters complete the relative complex permittivity measurement of polycrystalline
ceramic materials at 0.95 GHz and 2.4 GHz [21]; Vasundara V. Varadan designed a high-temperature
relative complex permittivity measurement system based on free space method in their paper [22].
The system can measure the relative permittivity of materials with a frequency of 5.85–40 GHz and a
temperature of 850 ◦C. The system uses the pair of point-focusing antennas to transmit and receive
electromagnetic waves by heating the measured substances in a high-temperature furnace during
measurement, and measures the parameters of the experimental system |S21| by a vector network
analyzer, and then calculates the relative complex permittivity of the material. Yuma Katsuta designed
a set of high temperature relative complex permittivity measurement system with a frequency of
2450 MHz using a cylindrical cavity in 2007 [23], by measuring the signal of the vector network analyzer.
The power amplifier is used for amplification, and then the measured substance is heated by microwave
heating, and the maximum heating power is up to 100 W. The relative complex permittivity of the
measured substance is calculated by the scattering parameter of the cylindrical resonator. Arai et al.
designed two different dielectric measurement systems to measure the high temperature relative
complex permittivity of ceramic materials up to 1200 ◦C [7].

This paper proposes an on-line temperature relative complex permittivity measurement system at
the frequency of 2450 MHz based on microwave interferometer. A ridge waveguide is designed as
the core device of the system, where the tested materials can be placed. The scattering parameters
are measured using the microwave power and microwave interferometer. The Extreme Gradient
Boosting (XGBoost) [24] algorithm is used to predict the relative complex permittivity of the tested
materials by performing regression training on data sets which are collected by finite difference time
domain (FDTD) [25] simulation. Furthermore, the system uses linear regression algorithm (LR) [26] to
calibrate the system to improve the measurement accuracy. The measurement system also integrates a
data acquisition network to realize the automatic acquisition of measurement data for easy operation.
The feasibility of the system was verified at room temperature and high temperature. Measurements
on relative complex permittivity of the alcohols and Macor materials are also performed to evaluate the
performance of the system. The measurement result proved the feasibility of the measurement system.

2. System Design

In the system, the ridge waveguide is used for heating and measuring, and the structure of ridge
waveguide is shown in Figure 1. The ridge waveguide has a cut-off waveguide on the upper and
lower sides, where the test tube is placed. The cut-off waveguide can pass electromagnetic waves
above the cutoff frequency, filter out electromagnetic waves below the cutoff frequency to achieve
electromagnetic shielding [27]. Combined with the FDTD (finite difference time domain) simulation,
the size of the ridge waveguide is constantly optimized, and the final size of the designed ridged
waveguide is shown in Table 1.
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Table 1. Dimensions of the ridged waveguide. 
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The system consists of a solid-state source, a circulator, a dual directional coupler, a ridge 
waveguide, a matched load power meter, an infrared thermometer, an interferometer module, and a 
data acquisition module. The measurement system is shown in Figure 2a. The material to be tested is 
placed in a quartz glass tube located at the center of the ridge waveguide. In order to solve the 
problem of non-uniform heating, a double-layer glass tube is used as shown in Figure 2b. The 
thickness of the inner and outer layer is 1.5 mm, the thickness of the air layer is 2 mm, and the 
diameter of the measured material is 10 mm. The power generated by the microwave source is 
coupled to both ends of the ridge waveguide via a circulator and a dual directional coupler, 
respectively. The power meter is also connected to a dual directional coupler to measure the input 
power, output power, and transmission power of the ridge waveguide. Based on the measured 
power, 11S and 21S at both ends of the ridge waveguide in the current state can be calculated. By 

adding a microwave interferometer module to the measurement system, the real-time measurement 
of the phase of 11S can be accomplished while using microwave heating. 
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Table 1. Dimensions of the ridged waveguide.

Name Ridge
Width

Ridge
Length

Ridge
Height

Observation
Hole Radius

Waveguide
Length

Waveguide
Diameter

Material Hole
Radius

Size (mm) 26.9 180 19.2 10.8 200 54.61 × 109.22 10

The system consists of a solid-state source, a circulator, a dual directional coupler, a ridge
waveguide, a matched load power meter, an infrared thermometer, an interferometer module, and a
data acquisition module. The measurement system is shown in Figure 2a. The material to be tested is
placed in a quartz glass tube located at the center of the ridge waveguide. In order to solve the problem
of non-uniform heating, a double-layer glass tube is used as shown in Figure 2b. The thickness of the
inner and outer layer is 1.5 mm, the thickness of the air layer is 2 mm, and the diameter of the measured
material is 10 mm. The power generated by the microwave source is coupled to both ends of the
ridge waveguide via a circulator and a dual directional coupler, respectively. The power meter is also
connected to a dual directional coupler to measure the input power, output power, and transmission
power of the ridge waveguide. Based on the measured power, |S11| and |S21| at both ends of the ridge
waveguide in the current state can be calculated. By adding a microwave interferometer module to the
measurement system, the real-time measurement of the phase of S11 can be accomplished while using
microwave heating.
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Figure 2. Measurement system diagram: (a) the whole system, (b) top view of the glass tube. 

During the heating process, the relative complex permittivity of the material changes with the 
increase of temperature, and the absorption and reflection of the microwave also change. The change 
of the reflected power and the transmitted power means the change of 11S , 21S , and

11Sφ , indicating 

that the relative complex permittivity of the material have a certain correspondence with the S 
parameters. Therefore, the XGBoost algorithm is used to simulate the corresponding relationship. 
The process of predicting relative complex permittivity with XGBoost algorithm is shown in Figure 
3. First, the data sets with labels used for algorithm training are generated by FDTD simulation, then 
XGBoost machine learning model is established by Python language, automatic parameter 
optimization is carried out by grid search method [28]. Finally, the S parameters measured by 
experiments can be sent to the well-trained XGBoost algorithm model, then the relative complex 
permittivity can be predicted. 

 
Figure 3. Inversion flow chart. 

Figure 2. Measurement system diagram: (a) the whole system, (b) top view of the glass tube.

During the heating process, the relative complex permittivity of the material changes with the
increase of temperature, and the absorption and reflection of the microwave also change. The change of
the reflected power and the transmitted power means the change of |S11|, |S21|, and ϕS11 , indicating that
the relative complex permittivity of the material have a certain correspondence with the S parameters.
Therefore, the XGBoost algorithm is used to simulate the corresponding relationship. The process of
predicting relative complex permittivity with XGBoost algorithm is shown in Figure 3. First, the data
sets with labels used for algorithm training are generated by FDTD simulation, then XGBoost machine
learning model is established by Python language, automatic parameter optimization is carried out
by grid search method [28]. Finally, the S parameters measured by experiments can be sent to the
well-trained XGBoost algorithm model, then the relative complex permittivity can be predicted.
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3. Methodology

3.1. Samples Generation

In the measurement of high temperature relative complex permittivity, the construction of sample
space is particularly important. When XGBoost algorithm is used to inverse the dielectric properties,
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it often encounters multi-value problems, which means that different relative complex dielectric
coefficients correspond to the same S parameters. In order to solve this problem, the system optimizes
the structure of the ridge waveguide model during design, so that the relative complex dielectric
coefficient corresponds to the S parameter one by one. The monotonicity of the data is ensured
by continuously optimizing the height and width of the ridge and the diameter of the quartz tube
combined with the FDTD algorithm. Figure 4a,b shows the relationship between |S11|, |S21| and
dielectric properties of the final ridged waveguide, respectively.
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Figure 4. (a) Relationship between |S11| and relative complex permittivity; (b) Relationship between
|S21| and relative complex permittivity.

It can be seen from Figure 4 that when the real part of the dielectric is in the range of 1–5, there
is a multivalued phenomenon of |S11|, but the monotonicity is better when the range of the real part
of the dielectric is 5–40. However, |S21| is monotonous in the range of 1–40, basically there is no
multi-value phenomenon.

In order to reduce the multi-value phenomenon of the inversion calculation better, the XGBoost
adopts three input and two output network structures, with |S11|, |S21| and ϕS11 as the input vectors,
and the real and imaginary parts of the relative complex permittivity as the output vectors. So there is
a certain requirement for the monotonicity of ϕS11 . Therefore, the relationship between ϕS11 and the
relative complex permittivity in the ridge waveguide is calculated with FDTD simulation, as shown in
Figure 5.Materials 2020, 13, 1419 6 of 12 
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Figure 5. Relationship diagram of ϕS11 and relative complex permittivity.

It can be seen from the figure that with the real part of the relative complex permittivity, ϕS11

decreases gradually. When the real part of the relative complex permittivity is less than 30, there is a
multi-valued phenomenon of ϕS11 . However, the combination of |S11| and |S21| can effectively avoid
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the influence of single parameter and multi-value on algorithm inversion, that ensure the accuracy of
calculation results.

3.2. Algorithm Model Construction

This paper used the XGBoost algorithm as the core algorithm for inverting relative complex
permittivity. Boosting is a machine learning technique algorithm. It is one of the Boosting algorithms,
a boost library with linear scale solver and tree learning algorithm developed by Tianqi Chen of the
university of Washington in 2016 [24]. Its biggest characteristic is that it can call CPU manually for
multithreading parallel computing, so it is more than ten times faster than the same algorithm under
the same condition [29]. The algorithm is also improved to achieve higher accuracy. The steps can be
described as follows:

1. Add a regularization term to the target function:

Loss(xi) =
n∑

i=1

l(ŷi, yi) +
t∑

i=1

Ω( fi) (1)

where

Ω( f ) = γT +
1
2
λ

T∑
j=1

ω2
j (2)

ft(x) = wq(x) (3)

Loss is the error function, representing the fitted data of the model. Ω is a regularization term,
which represents the parameters of the penalty complex model and is used to solve over fitting. In this
paper, yi and ŷi represent the actual and predicted relative complex permittivity (ε′r,ε

′′

r ) respectively. x
represents scattering parameters (|S11|,|S21|,ϕS11 ).

2. Second-order Taylor expansion is used to expand the error function at ŷt−1
i :

loss ≈
n∑

i=1

l
(
yi, ŷi

t−1
)
+gi ft(xi) +

1
2

hi ft(xi)
2] +

t−1∑
i=1

Ω( fi) + Ω( ft) (4)

where
gi = ∂ŷ(t−1) l

(
yi, ŷi

t−1
)

(5)

hi = ∂2
ŷt−1L

(
yi, ŷi

t−1
)

(6)

3. Removing all constant terms and substituting Equation (3) and regular terms (2) into Equation
(4), we can get:

loss ≈
n∑

i=1

[
giwq(xi)

+
1
2

hiw2
q(xi)

]
+ γT + λ

1
2

w2
j (7)

4. Defining the sample set on the j-th leaf node as: I j =
{
i
∣∣∣q(xi) = j

}
, then converting the sample

accumulation operation to operation on the leaf node:

loss ≈
T∑

j=1


∑

i∈I j

gi

w j +
1
2

∑
i∈I j

hi + λ

w2
j

γT (8)

This paper builds the XGBoost machine learning model based on the Python programming
language. The mean squared error (MSE), the mean absolute error (MAE), and the coefficient of
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determination (R2) in the metrics module in s-klearn library are called to evaluate the prediction
error [30]. The MSE and MAE estimated over nsamples is defined as:

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)
2 (9)

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

∣∣∣yi − ŷi
∣∣∣ (10)

where ŷi is the predicted value of the i-th sample, and yi is the corresponding actual value. The R2

estimated over nsamples is defined:

R2(y, ŷ) = 1−

nsamples−1∑
i=0

(yi − ŷi)
2

nsamples−1∑
i=0

(yi − y)2

(11)

where y = 1
nsamples

nsamples−1∑
i=0

yi. R2 provides an index of the degree of accuracy in the predicted samples.

The best score of R2 is 1. Besides, the smaller the MSE and MAE, the better the prediction.
After training the XGBoost model with the training data set obtained from FDTD simulation,

the parameters of XGBoost model are determined by optimizing the values of MSE, MAE, and R2, as
shown in Table 2.

Table 2. Parameters of Extreme Gradient Boosting (XGBoost) model.

Max_depth Learning_rate Objective N_estimator Booster Gamma Lambda

6 0.1 logistic 1000 gbtree 0.1 3
Subsample ε′r MSE ε′r MAE ε′rR2 ε′′r MSE ε′′r MAE ε′′r R2

0.7 0.1683 0.2907 0.9982 0.00101 0.0244 0.9889

After the parameters of XGBoost model are obtained, different data from the training data set is
selected to test this model, so that the prediction effect of the algorithm can be evaluated. Figure 6
shows the prediction of the real and imaginary parts of the relative complex permittivity. It can be seen
from the above figure that the prediction error of the real part of the complex permittivity can be as
low as 1.1%, and when the real part is less than 20, the predicted value is very accurate, the imaginary
error is generally below 3%.
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3.3. System Calibration

In order to ensure the accuracy of system measurement, the system needs to be calibrated before
measurement to eliminate the error caused by system deviation. This paper uses linear regression
algorithm in machine learning to calibrate the system [31]. The data of several groups of common and
easily accessible chemical reagents are measured using the system without calibration. The results show
that the measurement results of methanol and ethanol (reagent grade liquid, Chengdu Kelong Chemical
Reagent Factory, Chengdu, China) are more accurate and stable, as shown in Table 3. Therefore,
methanol, ethanol, and air test are combined with linear regression algorithm to calibrate the system.
The calibration principle is as follows:

Ŝ(ω, S) = ω0 +ω1Smethanol +ω2Sethanol +ω3Sair (12)

Here, we define ω = {ω0,ω1,ω2,ω3} as the parameter vector of system drift. S =
{
|S11|, |S11|,ϕS11

}
is the S parameters after system calibration. Smethanol, Sethanol and Sair represent labeled data sets
of methanol, ethanol, and air respectively, that are the S parameters measured and simulated by
FDTD algorithm.

The drift parameter vector ω of the system can be determined by algorithm and this data.
Therefore, when the calibrated system is used for measurement, the calibrated S parameters can be
obtained by inputting the measured S parameters, and then sending them to the well-trained XGBoost
model for inversion. The results after calibration with regression algorithm are also shown in Table 3.

Table 3. Measurement results of methanol and ethanol.

Material Property Before Calibration Ref [32] Errors After Calibration Errors

methanol
ε′r 25.2 24.97 0.92% 25.11 0.56%
ε′′r 14.26 14.48 1.51% 14.32 1.10%

ethanol
ε′r 8.28 8.94 7.38% 8.72 2.46%
ε′′r 7.29 7.60 4.08% 7.45 1.97%

The results show that the system error reduced after calibration. Therefore, in order to improve
the accuracy of system measurement, it is necessary to measure the S parameter values of methanol,
ethanol, and air before experiment to calibrate the system. The schematic diagram of system calibration
with linear regression algorithm is shown in Figure 7.Materials 2020, 13, 1419 9 of 12 
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4. Measured Results and Discussion

Measurements are conducted to verify the system reliability under room temperature and dynamic
high temperatures respectively.



Materials 2020, 13, 1419 9 of 12

4.1. Room Temperature Measurement

The easy-to-access chemical substances in the laboratory are used for the experiment. As shown in
Table 4, the relative complex permittivity of methanol and ethanol and the relative complex permittivity
of mixed solutions of different chemical solvents were tested using the system. The reference values
are obtained by other experiments at the frequency of 2450 MHz [32], and the values of mixtures can be
obtained by the Bruggeman formula [33]. The measurement errors are all within 8%, which basically
meets the general measurement accuracy requirements.

Table 4. Measurement results at room temperature. (“4 methanol + 1 ethanol” means the volume rate
between methanol and ethanol is 4 to 1.)

Media Measured ε
′

r Reference ε
′

r Errors Measured ε”r Reference ε”r Errors

Ethanol 8.72 8.94 2.46% 7.45 7.60 1.97%
Methanol 25.11 24.97 0.56% 14.32 14.48 1.10%

4 methanol + 1 ethanol 20.75 21.03 1.33% 13.28 13.04 1.84%
2 methanol + 3 ethanol 13.25 14.09 5.96% 10.73 10.14 5.82%

4 methanol + 1 N-butanol 19.21 19.17 0.21% 11.66 11.12 4.86%
2 methanol + 3 N-butanol 9.31 9.13 1.97% 5.77 5.39 7.05%

4.2. High Temperature Measurement

Macor materials that are less susceptible to deformation at elevated temperatures are used to
verify the relative complex permittivity of the system at elevated temperatures. The experimental
results were compared with the results in the reference [34]. The specific measurement results are
shown in Figure 8.Materials 2020, 13, 1419 10 of 12 
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Figure 8. Comparison of measured and reference relative complex permittivity of Macor.

It can be seen from the measurement results that when the temperature is below 400 ◦C, the
measured values of the real and imaginary parts of the relative complex permittivity of Macor are close
to those of the reference. When the temperature reaches 500 ◦C, the real and imaginary parts of the
relative complex permittivity of Macor show a certain degree of increase. The measured real part has a
certain deviation from the reference value, but the error is small. The value of the imaginary part of the
electrical coefficient is still relatively close. When the temperature rises to 600 ◦C, the change trend of
the imaginary part of the complex dielectric constant is still consistent with the reference. The measured
value of the real part of the complex dielectric coefficient still has a certain deviation from the reference
value, but the change trend is consistent. To some extent, the accuracy of the measurement of the
system is proved, and compared with the measurement results in the previous chapter, after adding the
phase measurement to the system, the relative complex permittivity of the Macor and the reference are
calculated by inversion. The values are closer, indicating that the measurement accuracy of the system
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is improved compared to the measurement system of the previous chapter, and the measurement
accuracy of the system is further optimized.

5. Conclusions

This paper designs an on-line high temperature relative complex permittivity measurement system
at a working frequency of 2450 MHz. The core device of the system is a ridge waveguide, and the heating
and relative complex permittivity of the sample to be tested are measured by the ridge waveguide; the
scattering parameters in the experimental system are measured using a microwave power meter and a
microwave interferometer, respectively, and the XGBoost model training is completed to construct
an inversion calculation network to realize the calculation and measurement of the relative complex
permittivity of the measured substance. The accuracy of the system measured at room temperature
was verified using chemical solvents and their mixed solvents with known relative complex dielectric
coefficients. The relative complex permittivity of Macor materials up to 800 ◦C was measured and
compared, and the online high temperature relative complex was compared. The measurement results
of the electrical coefficient measurement system and the data in the reference documents verify the
measurement accuracy of the high temperature relative complex permittivity measurement system in
the high temperature range.

Author Contributions: T.H. and L.W. conceived and designed the experiments; Y.W. developed the model,
performed the experiments, analyzed the data, and wrote the initial draft of the manuscript; H.Z. reviewed and
contributed to the final manuscript; H.Z. helped with the location and equipment. All authors have read and
agreed to the published version of the manuscript.
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