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Abstract: A homogenization theory that can go beyond the regime of long wavelengths is proposed,
namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin.
In this paper, we consider that the displacement vector and the magnetic induction fields have
averages in the volume of the cell associated with the values of the electric and magnetic fields in
the edges of the cell, so they satisfy Maxwell’s equations. Applying Fourier formalism, explicit
expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of
one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic
response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably
simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case
of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical
calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion
is shown and analyzed. Our results show good correspondence with the approach solution of Rytov’s
effective medium. The derived formulas can be very useful for the design of anisotropic systems with
specific optical properties that exhibit metamaterial behavior.

Keywords: photonic crystal; homogenization theory; effective parameters; metamaterial

1. Introduction

The concept of metamaterial was initially introduced to explain the striking physical properties
of photonic crystals, composed of resonant elements or having a very large dielectric contrast.
For example, recently in [1], the design of a bilayer device (1D photonic crystal) made of dielectric
materials on a substrate was reported. This membrane-type device enhances the Faraday rotation
in comparison with plasmonic or metal-dielectric periodic structures, as well as showing good
efficiency as a waveguide for transverse magnetic and transverse electric polarizations. Staude and
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Schilling [2] reviewed the optical properties of metamaterial-inspired silicon nanostructures, to explain
the resonant frequency dependence of the optical metamaterial parameters, e.g., three-dimensional
metamaterial-inspired arrangements of silicon nanoparticles having Mie resonances at a low frequency
and behaving as double-negative electromagnetic mediums with simultaneously negative effective
dielectric permittivity and magnetic permeability. Moreover, there are photonic crystals made of
materials that are stimuli-responsive (the materials, either soft or aggregate, respond to thermal, pH,
chemical, mechanical, optical, electrical or magnetic stimuli). With the application of these external
stimuli, the range of electromagnetic frequencies in which there are no allowed propagation modes
for any direction of the crystal are principally controlled. This can be exploited for applications in
liquid–crystalline structures, sensors, optical phenomena diffraction and emission of photoluminescent
materials. However, in recent years, scientists have faced a new challenge in studying the optical
properties of these stimuli-responsive artificial materials in the area of nanophotonics. One of the
great advances in this area is the design and manufacture of stimuli-responsive optical nanostructures
(see, e.g., [3] and references therein). Thus, the most recent reports on these extraordinary structures
offer great challenges and research opportunities in both physics and materials engineering, ranging
from manufacturing techniques to the development of approximations and useful theories for the
calculation of their effective electromagnetic magnitudes that allow us to characterize the control of the
propagation of electromagnetic waves in the medium.

Magneto-dielectric photonic crystals are an interesting kind of metamaterial because of their
unusual optical anisotropy [4,5]. The homogenization theories suggested in [4] and [5] provide accurate
calculations to determine the effective refractive index for dielectric and magneto-dielectric 2D photonic
crystals, respectively. Nowadays, homogenization theories have been proposed in order to calculate the
effective optical parameters of metallo-dielectric photonic crystals with magnetic components (see, for
example, [6–13] and references therein). All these theories characterize the electromagnetic oscillations
in bianisotropic media, defined by the effective permeability, permittivity, and crossed magneto-electric
tensors. Unfortunately, although the expressions for the effective parameters, obtained by some of these
theories [4–6,9,11,12], are valid for photonic crystals with any type of Bravais lattice, their application
in the case of 3D periodicity turns out to be impractical.

The purpose of this work is to present a homogenization theory that allows us to calculate the
effective electromagnetic response of magneto-dielectric photonic crystals valid beyond the regime
of long wavelengths, i.e., for wave vectors near the edge of the first zone of Brillouin. Explicit
expressions are obtained for the tensors of the effective bianisotropic responses in the case of a
photonic crystal with arbitrary periodicity, which, in the case of 1D photonic crystals, are significantly
simplified. In developing our theory, called Coherent Wave Homogenization theory, we consider that
the displacement vector (D) and the magnetic induction (B) fields have averages in the volume of
the cell associated with the values of the electric (E) and magnetic (H) fields in the edges of the cell,
so that they satisfy Maxwell’s equations. Furthermore, to determine the effective optical properties,
we will efficiently use the general formalism of homogenization theories (see [14] and its references),
based on Fourier formalism, which provides explicit formulas to determining all the components of
the bianisotropic response tensors. Unlike previous theories, we present an approach for accurate
calculations of the effective tensors in terms of the parameters of permittivity and permeability of the
inclusion in the unit cell. The numerical implementation of the formulas obtained will be applied
to 1D magneto-dielectric photonic crystals to study how the effective response of permeability and
permittivity tensors behave versus the filling fraction and with the variation in the material parameters
of the isotropic or anisotropic magnetic inclusions.
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2. Mathematical Formulation: Homogenization Theory of Coherent Wave

2.1. Finite Fourier Transform

In this section, we shall derive an expression for the effective tensors based on the principle
of wavelengths comparable with the lattice period for characterizing the bulk optical response of a
homogenized magneto-dielectric photonic crystal. The most general form for such a response is the
so-called bianisotropic response, generally written in the EH- (or Tellegen) representation, using the

permittivity
↔
ε and permeability

↔
µ tensors and two crossed magneto-electric dyadics,

↔

ζ and
↔

ξ , which
depend on the position (

→
r ) in the photonic crystal. Such tensorial representation relates the electric E

and magnetic H fields with the displacement vector D and the magnetic induction B:

D(
→
r ) =

↔
ε (
→
r ) · E(

→
r ) +

↔

ξ (
→
r ) ·H(

→
r ), (1)

B(
→
r ) =

↔

ζ (
→
r ) · E(

→
r ) +

↔
µ(
→
r ) ·H(

→
r ). (2)

The behavior of these fields is governed by Maxwell equations:

5× H(
→
r ) = −iωD(

→
r ), (3)

5 ·D(
→
r ) = 0, (4)

5× E(
→
r ) = −iωB(

→
r ), (5)

5 ·B(
→
r ) = 0. (6)

Now, with Equations (1) and (2), we rewrite the laws of Ampere–Maxwell (in Equations (3) and
(4)) and Faraday in (Equations (5) and (6)) in matrix form:

↔

0 5×
↔

I

−5×
↔

I
↔

0

 · v(→r ) = −iωw(
→
r ). (7)

In this latter equation, the dyadic unit and zero are introduced (
↔

I and
↔

0 , respectively), as well as
the vectors EH and DB (v(

→
r ) and w(

→
r ), respectively), given by:

v(
→
r ) ≡

 E(
→
r )

H(
→
r )

, w(
→
r ) ≡

 D(
→
r )

B(
→
r )

 = =
A(
→
r )v(

→
r ) (8)

where
=
A(
→
r ) is a 6 × 6 matrix defined by:

=
A(
→
r ) ≡

 ↔ε (→r )
↔

ξ (
→
r )

↔

ζ (
→
r )

↔
µ(
→
r )

 (9)

Due to the periodicity of the bianisotropic response tensors, we write the matrix
=
A(
→
r ) in an

expansion in Fourier series:
=
A(
→
r ) =

∑
→

G

=
A(
→

G)ei
→

G·
→
r (10)

the summation extends over the vectors of the reciprocal lattice (
→

G) of the photonic crystal.
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Moreover, we can expand the vectors in Bloch waves due to the periodicity along the plane
parallel to one of the surfaces of the photonic crystal:

v(
→
r ) =

∑
→

G||
ei
→
q
||
·
→
r ||v(

→

G||, z)ei
→

G||·
→
r || , (11)

where
→

G|| is a vector of the reciprocal lattice of the plane perpendicular to the z-direction.
Substituting Equation (11) into Equation (7), we get:

↔

0 (i(
→
q
||
+
→

G||) + ẑ ∂
∂z ) ×

↔

I

−(i(
→
q
||
+
→

G||) + ẑ ∂
∂z ) ×

↔

I
↔

0

v(→G||, z) = −iωw(
→

G||, z) (12)

Now, we will apply the finite Fourier transform in an interval along the z-axis of length equal to
the lattice constant a:

F(Gz) =
1
a

∫ a/2

−a/2
f (z)e−iGzzdz, (13)

where Gz =
2πnz

a , nz=−∞, . . . ,∞. The inverse transform is given by the series:

f (z) =
∑

Gz
eiGzz f (Gz) , for−

a
2
≤ z ≤

a
2

(14)

From Equations (12) and (13), we obtain:
↔

0
(
i(
→
q
||
+
→

G||) + ẑ ∂
∂z

)
×
↔

I

−(i(
→
q
||
+
→

G||) + ẑ ∂
∂z ) ×

↔

I
↔

0

v(→G||, Gz)dz+

(15)
↔

0 ẑ
a ×
↔

I

−
ẑ
a ×
↔

I
↔

0

[v(→G||, z = a) − v(
→

G||, z = 0)] = −iωw(
→

G||, Gz).

Rewriting this equation and considering that:

w(
→

G||, Gz) =
∑

→

G
′

||,G′z

=
A(
→

G|| −
→

G
′

||, Gz −G′z)v(
→

G
′

||, G′z), (16)

here,
=
A is the matrix of the bianisotropic response. Therefore, Equation (15) can be rewritten as:

∑
→

G
′

||,G′z

=
D(
→

G||, Gz,
→

G
′

||, G′z)v(
→

G||, Gz) =


↔

0 ẑ
a ×
↔

I

−
ẑ
a ×
↔

I
↔

0

[v(→G||, z = a) − v(
→

G||, z = 0)] (17)

where:

=
D(
→

G||, Gz,
→

G′||, G′z) =


↔

0 (i(
→
q
||
+
→

G||) + iẑGz) ×
↔

I

−(i(
→
q
||
+
→

G||) + iẑGz) ×
↔

I
↔

0

δ→G||,Gz;
→

G
′

||,G′z
+

iω
=
A(
→

G|| −
→

G
′

||, Gz −G′z)

(18)

The amplitudes v(
→

G||, z = 0) and v(
→

G||, z = a) in Equation (17) are defined by the expressions:

v(
→

G||, z = 0) =
∑

Gz
v(
→

G||, Gz)eiGz0+ (19)
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v(
→

G||, z = a) =
∑
Gz

v(
→

G||, Gz)eiGza− (20)

Using Equations (17)–(19), a homogeneous system is obtained for the amplitudes v(
→

G||, z = 0)

and v(
→

G||, z = a). Therefore, the amplitudes for
→

G|| , 0 can be expressed in terms of one of them, for

example, v(
→

G|| = 0, z = 0).
Now, let us determine the effective response. From Equations (17) and (19), we have:

v(
→

G||, z = 0) = −
∑

Gz,
→

G
′

||,G′z

=
D
−1
(
→

G||, Gz,
→

G
′

||, G′z)eiGz0+


↔

0 ẑ
a ×
↔

I

−
ẑ
a ×
↔

I
↔

0

×
[v(
→

G
′

||, z = a) − v(
→

G
′

||, z = 0)]

(21)

This expression can be written as:
↔

0 ẑ
a ×
↔

I

−
ẑ
a ×
↔

I
↔

0

[v(→G||, z = a) − v(
→

G||, z = 0)] =

−
∑
→

G
′

||

{
∑

Gz,G′z

=
D
−1
(
→

G||, Gz,
→

G′||, G′z)eiGz0+
}

−1

v(
→

G
′

||, z = 0).

(22)

Evaluating this equation in
→

G|| = 0, we obtain an equation for the coherent component:


↔

0 ẑ
a ×

↔

I

−
ẑ
a ×

↔

I
↔

0

[v(→G|| = 0, z = a) − v(
→

G|| = 0, z = 0)] = −
∑

→

G
′

||

{
∑

Gz ,G′z

=
D
−1
(
→

G|| = 0, Gz,
→

G
′

||, G′z)eiGz0+}
−1

v(
→

G
′

||, z = 0). (23)

In the bulk of the photonic crystal, the Bloch theorem must be satisfied, v(
→

G|| = 0, z = a) =

eiqzav(
→

G|| = 0, z = 0), so the term on the left side in Equation (23) can be written as:

1
a [v(

→

G|| = 0, z = a) − v(
→

G|| = 0, z = 0)] = 〈 d
dz eiqza

〉v(
→

G|| = 0, z = 0)

= iqz〈eiqza
〉v(
→

G|| = 0, z = 0)
(24)

Substituting this into Equation (23), we arrive at the equations for the coherent amplitude:
↔

0 iqzẑ×
↔

I

−iqzẑ×
↔

I
↔

0

v(→G|| = 0, z = 0)

= − 1
〈eiqza〉

·
∑
→

G
′

||

 ∑
Gz,G′z

=
D
−1
(
→

G|| = 0, Gz,
→

G
′

||, G′z)eiGz0+

−1

v(
→

G
′

||, z = 0)

(25)

which correspond to the Maxwell equations for the amplitude of the field E–H, propagating in the
z-direction, in a homogeneous medium:

↔

0 iqzẑ×
↔

I

−iqzẑ×
↔

I
↔

0

v(→G|| = 0, z = 0) = −iωwe f f , (26)

where
we f f =

=
Ae f f v(

→

G|| = 0, z = 0), (27)
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is the effective field D–B. The effective matrix
=
A of the bianisotropic response is obtained directly from

Equations (25) and (27), and the relationship between the coefficients v(
→

G′||, z = 0) and the coherent

amplitude v(
→

G|| = 0, z = 0) mentioned above (Equation (21)). Therefore, we have explicit expressions
to calculate the effective tensors of the bianisotropic response of a homogenized photonic crystal
without any restrictions on the wave vector qz.

2.2. 1D Photonic Crystals

Let us calculate the effective parameters for a homogenized binary (bilayer) 1D photonic crystal.

The Fourier coefficients
=
A(
→

G) in Equation (16) are given by Equation (28); the crossed magnetoelectric
tensors are assumed to be equal to 3 × 3 zero matrices:

=
A(Gz −G′z) =


↔

I ε(Gz −G′z)
↔

0
↔

0
↔

I µ(Gz −G′z)

 (28)

where

ε(Gz −G′z) =
1
a

∫ a

0
ε(z)e−i(Gz−G′z)zdz, (29)

effecting the integral on the unit cell, the following expression is obtained:

ε(Gz −G′z) = e−i(Gz−G′z)a/2[εbδGz,G′z + ∆ε F(Gz −G′z)]. (30)

The matrix
=
D (Equation (18)), acquires the simplest form:

=
D(Gz, G′z) =


↔

0 (
→
q
||
+ ẑGz) ×

↔

I

−(
→
q
||
+ ẑGz) ×

↔

I
↔

0

δGz,G′z+ω
=
A(Gz −G′z), (31)

and it satisfies ∑
G′z

=
D(Gz, G′z)

=
D
−1
(G′z, G′′z ) =

↔

I δGz,G′′z . (32)

On the other hand, the effective matrix takes the form:

=
Ae f f =

1
ω

1
〈eiqzz〉


∑

Gz,G′z

=
D
−1
(Gz, G′z)e

iGz0+


−1

(33)

Let us introduce

D̃−1(G′z) =
∑
Gz

eiGz0+
=
D
−1
(Gz, G′z) (34)

so, the effective matrix (Equation (33)) acquires the simplest form:

=
Ae f f =

1
ω

1
〈eiqzz〉


∑
G′z

D̃−1(G′z)


−1

(35)

Note that this expression depends on qz, which in general is non-local, i.e., the effective parameters
depend on both frequency ω and the wave vector qz.

3. Implementation and Results

In this section, we apply the Coherent Wave Homogenization theory developed in the previous
section for calculating the effective permeability and permittivity tensors versus the filling-fraction of
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1D magneto-dielectric photonic crystals. Here, it is convenient to indicate that in the case of alternating
layers being sufficiently thin in comparison with the characteristic wavelength, we can treat the
whole system as an anisotropic medium with effective response tensors (we consider that the Bloch
wavelength is much greater than the lattice parameter of the photonic crystal, qza << 1). As follows
from Figure 1 and according to the previous conditions for wavelength frequencies in THz, a lattice
parameter a = 0.15 µm is proposed, d is the thickness of the inclusion layer and for the case of a
superlattice with two alternating layers, the filling fraction f = d/a, and is valid for values of d in the
range 0 ≤ d ≤ a. In this work, the interest in the THz regime becomes more attractive due to the huge
technological applications, e.g., telecommunications, sensing and astronomy. In general, the periodicity
of the photonic structure will be proportional to the wavelength of the electromagnetic radiation
to be controlled. Therefore, for homogenized photonic crystals of arbitrary thickness, the effective
electromagnetic magnitudes of magnetic permeability and dielectric permittivity that characterize
the propagation of electromagnetic waves in the medium can always be determined. Here, we will
study photonic crystals whose bilayer unitary cell is composed of a layer of dielectric material with
inclusions of magnetic–isotropic and magnetic–anisotropic media. The constituents of the unit cell will
be considered in a usual manner—that is, medium “A” will correspond to the inclusion and medium
“B” to the background or host (see Figure 1).Materials 2020, 13, x FOR PEER REVIEW 7 of 13 
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3.1. 1D Photonic Crystals with Isotropic Inclusion

Now, using Equation (35), we have numerically calculated the 6 × 6 matrix
=
Ae f f of the effective

tensor of the bianisotropic response, in the local limit (qz→0) with a total number of nz = 101 waves.
As an initial application, we consider photonic crystals composed of a homogeneous host and isotropic
inclusions. Specifically, in Figure 2, we present the results for a superlattice whose unit cell is composed
of a magnetic material, in this case isotropic ferrite, considered as medium “A”, and a dielectric material
homogeneous to silicon, as medium “B”; the parameters considered for this calculation were: εA = 13ε0,
µA = 8µ0 and εB = 12.25ε0, µB = µ0, respectively (ε0 and µ0 are the permittivity and permeability of
the vacuum, respectively). In this figure we show the permittivity and the effective permeability as a
function of the filling fraction f, note that εx = εy and µx = µy, since there is isotropy in the x − y plane.
Figure 3 corresponds to a unit cell formed by ferrite in air; the parameters considered were: εA = 13ε0,
µA = 8µ0 and εB = ε0, µB = µ0.

Next, we considered photonic crystals with high dielectric and magnetic contrast in their unit
cell. Figure 4 corresponds to a system of common glass in a homogeneous dielectric as the host, the
parameters used were: εA = 100ε0, µA = 200µ0 and εB = 2.25ε0, µB = µ0. Finally, in Figure 5, a medium
of common glass in air is considered, whose parameters are: εA = 100ε0, µA = 200µ0 and εB = ε0,
µB = µ0.
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Figures 2–5 indicate the averages of the permittivity and the permeability in the unit cell and it is
observed that the increase in the values of εx (=εy) and µx (=µy), as well as in εz and µz in the function
of the filling fraction present a linear and non-linear behavior, respectively. Therefore, our results
describe the effective medium approach proposed by Rytov [15]—if the materials of the superlattice
layers are local and isotropic, the permittivity tensor is diagonal with principal values [15]:

εx = εy = εm f + εd(1− f ), (36)

1
εz

=
f
εm

+
1− f
εd

. (37)
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Here, the metal and dielectric layers are characterized by their permittivity, εm and εd; f is the
metal filling fraction and z denotes the direction perpendicular to the planes of the layers in the
superlattice. Equations similar to the previous ones are fulfilled for the magnetic media:

µx = µy = µm f + µd(1− f ) (38)

1
µz

=
f
µm

+
1− f
µd

. (39)

Evidently, when f→0, the medium “B” predominates and as the filling fraction increases, namely
f→1, the material will correspond to the inclusion. On the other hand, in Figures 4 and 5 it is observed
how for the effective electric permittivity and the effective magnetic permeabilities in the z-component
for filling fractions near 0.8, their values remain very close to the host, later ascending rapidly before
reaching the value of inclusion. This is due to the high contrast dielectric and magnetic qualities of the
materials in the unit cell, the contrast being defined as the ratio of medium “A” and medium “B”—that
is, εA/εB and µA/µB, respectively. Note that this behavior is not presented in Figures 2 and 3 due to
the low dielectric and magnetic contrast between the host and the inclusion.

3.2. 1D Photonic Crystals with Anisotropic Inclusion

In the applications that follow, we calculate the effective parameters of a photonic crystal whose
unit cell is formed by an anisotropic inclusion and isotropic background in the dielectric constant and
magnetic permeability.

Figure 6a shows the results for a superlattice where the inclusion presents anisotropy in the
dielectric constant; as can be observed, as the amount of the anisotropic medium increases (medium
"A"), the effective response becomes anisotropic, creating three well-defined values—that is, when
the filling fraction tends towards zero (f →0), the system is an isotropic homogenous medium with
permittivity εB. In the opposite case, when f →1 the system is an anisotropic homogenous medium
with permittivity εA. Note that εx and εy maintain a linear behavior determined by Equation (36), while
the component εz is represented by a curve defined by the result of the inverse relationship of Equation
(37). In the case of effective permeability (see Figure 6b), a linear behavior is observed, as determined by
Equation (38), which indicates an isotropic behavior for any filling fraction of the inclusion. Moreover,
from the inspection of Figure 6b, it is evident that µx = µy = µz, considering that both the inclusion and
the host have a relative permeability approximately equal to one (vacuum permeability).

On the other hand, the effective parameters of a superlattice whose inclusion presents anisotropy
in the magnetic permeability are determined. Therefore, the effective permittivity turns out to be
isotropic throughout the filling fraction of the inclusion (see Figure 7a) and shows a linear behavior
(εx = εy = εz), as determined in the first approximation by Equation (36). However, in Figure 7b,
the situation is somewhat different because as the amount of the anisotropic medium increases, the
effective response becomes anisotropic—that is, when f →0 the homogeneous medium is isotropic and
when f →1 the homogeneous medium is clearly anisotropic. However, it should be noted that µx and
µy maintain a linear behavior determined by Equation (38), while the µz component is represented by
a curve which is defined by Equation (39).

Finally, Figure 8 shows the results of the effective response for a photonic crystal whose inclusion
in its unit cell presents anisotropy in the dielectric permittivity and magnetic permeability. As can be
seen in both graphs, the physical situation is similar to that already discussed in Figures 6a and 7b
for the effective permittivity and permeability, respectively, where it is basically noted that when
increasing the filling fraction of the anisotropic medium, the effective response is anisotropic.



Materials 2020, 13, 1475 11 of 13

Materials 2020, 13, x FOR PEER REVIEW 10 of 13 

 

In the applications that follow, we calculate the effective parameters of a photonic crystal whose 

unit cell is formed by an anisotropic inclusion and isotropic background in the dielectric constant and 

magnetic permeability. 

 

Figure 6. Permittivity ε (a) and permeability μ (b) versus the filling fraction f (ε0 and μ0 are the units). 

The parameters used were: εAx = 2.5ε0, εAy = 5ε0, εAz = 7.5ε0, μA = μ0 (anisotropic media) and B = 12.250, 

μB = μ0 (isotropic media). 

Figure 6a shows the results for a superlattice where the inclusion presents anisotropy in the 

dielectric constant; as can be observed, as the amount of the anisotropic medium increases (medium 

"A"), the effective response becomes anisotropic, creating three well-defined values—that is, when 

the filling fraction tends towards zero (f →0), the system is an isotropic homogenous medium with 

permittivity B. In the opposite case, when f →1 the system is an anisotropic homogenous medium 

with permittivity A. Note that εx and εy maintain a linear behavior determined by Equation (36), 

while the component εz is represented by a curve defined by the result of the inverse relationship of 

Equation (37). In the case of effective permeability (see Figure 6b), a linear behavior is observed, as 

determined by Equation (38), which indicates an isotropic behavior for any filling fraction of the 

inclusion. Moreover, from the inspection of Figure 6b, it is evident that μx = μy = μz, considering that 

both the inclusion and the host have a relative permeability approximately equal to one (vacuum 

permeability). 

Figure 6. Permittivity ε (a) and permeability µ (b) versus the filling fraction f (ε0 and µ0 are the units).
The parameters used were: εAx = 2.5ε0, εAy = 5ε0, εAz = 7.5ε0, µA = µ0 (anisotropic media) and εB =

12.25ε0, µB = µ0 (isotropic media).Materials 2020, 13, x FOR PEER REVIEW 11 of 13 

 

 

Figure 7. Permittivity ε (a) and permeability μ (b) versus the filling fraction f (ε0 and μ0 are the units). 

The parameters used were: A = 130, μAx = 4μ0, μAy = 8μ0, μAz = 12μ0 and B = 12.250, μB = μ0. 

On the other hand, the effective parameters of a superlattice whose inclusion presents anisotropy 

in the magnetic permeability are determined. Therefore, the effective permittivity turns out to be 

isotropic throughout the filling fraction of the inclusion (see Figure 7a) and shows a linear behavior 

(εx = εy = εz), as determined in the first approximation by Equation (36). However, in Figure 7b, the 

situation is somewhat different because as the amount of the anisotropic medium increases, the 

effective response becomes anisotropic—that is, when f →0 the homogeneous medium is isotropic 

and when f →1 the homogeneous medium is clearly anisotropic. However, it should be noted that 

μx and μy maintain a linear behavior determined by Equation (38), while the μz component is 

represented by a curve which is defined by Equation (39). 

 

Figure 7. Permittivity ε (a) and permeability µ (b) versus the filling fraction f (ε0 and µ0 are the units).
The parameters used were: εA = 13ε0, µAx = 4µ0, µAy = 8µ0, µAz = 12µ0 and εB = 12.25ε0, µB = µ0.



Materials 2020, 13, 1475 12 of 13

Materials 2020, 13, x FOR PEER REVIEW 11 of 13 

 

 

Figure 7. Permittivity ε (a) and permeability μ (b) versus the filling fraction f (ε0 and μ0 are the units). 

The parameters used were: A = 130, μAx = 4μ0, μAy = 8μ0, μAz = 12μ0 and B = 12.250, μB = μ0. 

On the other hand, the effective parameters of a superlattice whose inclusion presents anisotropy 

in the magnetic permeability are determined. Therefore, the effective permittivity turns out to be 

isotropic throughout the filling fraction of the inclusion (see Figure 7a) and shows a linear behavior 

(εx = εy = εz), as determined in the first approximation by Equation (36). However, in Figure 7b, the 

situation is somewhat different because as the amount of the anisotropic medium increases, the 

effective response becomes anisotropic—that is, when f →0 the homogeneous medium is isotropic 

and when f →1 the homogeneous medium is clearly anisotropic. However, it should be noted that 

μx and μy maintain a linear behavior determined by Equation (38), while the μz component is 

represented by a curve which is defined by Equation (39). 

 

Figure 8. Permittivity ε (a) and permeability µ (b) versus the filling fraction f (ε0 and µ0 are the units).
The parameters used were: εAx = 2.5ε0, εAy = 5ε0, εAz = 7.5ε0, µAx = 4µ0, µAy = 8µ0, µAz = 12µ0 and
εB = 12.25ε0, µB = µ0.

4. Conclusions

In this work, a homogenization theory for 1D magneto-dielectric photonic crystals was presented.
The theory developed reports of analytical expressions that allow us to calculate the effective components
of the permittivity and permeability tensors. In particular, we have analyzed the case of photonic
crystals whose bilayer unitary cell is composed of a layer of dielectric material with inclusions of
magnetic–isotropic and magnetic–anisotropic media, in the local limit, when the wavelength of the
work frequency of the incident radiation on the medium is large compared to the period of the unit
cell. The numerical implementation of the formulas provides results for new types of homogenized
photonic metamaterials; in particular, we have studied theoretically the anisotropy of effective
magnetic permeability and effective dielectric permittivity for homogenized magneto-dielectric binary
superlattices versus the filling fraction. We demonstrated that the principal values for the components
of the permeability and permittivity effective tensors describe a regime where Rytov’s formulas are
valid. Our results may be useful for the better comprehension and design of metamaterials, due to
the anisotropy that they present in electro-magnetic modes, which can be manufactured even with
structures as simple superlattices.
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