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Abstract: CdTe thin films have been prepared by electrochemical deposition. The morphological,
structural, and optical properties of CdTe thin films deposited with different deposition time were
investigated, and the influence of film thickness on the photoelectric characteristics of CdTe thin films
was studied. At the deposition time of 1.5 h, CdTe thin films had good optical properties and the
photocurrent reached 20 µAcm−2. Furthermore, the Pt/CdS/CdTe/FTO structure was prepared to
improve its PEC stability and the photocurrent of 240 µAcm−2 had been achieved.
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1. Introduction

Energy shortage has become the primary problem hindering economic development and world
peace and is a focus of attention of all countries in the world. Traditional fossil energy is not only limited,
but also has released a great deal of pollution to the environment. As a kind of clean and renewable
energy, solar energy has attracted a lot of attention. By utilizing solar energy, the photoelectrochemical
(PEC) splitting of water can directly generate hydrogen in a relatively simple process [1]. Cadmium
telluride (CdTe) has a number of attractive properties as a photocathode material for PEC water
splitting and absorbing materials in photovoltaic cells [2]. It has a direct band gap of 1.45 eV and high
light absorption coefficient, which can reach 104 cm−1 in the visible light range [3–5].

CdTe thin films can be prepared with various methods, such as near space sublimation [6],
magnetron sputtering [7], vapor transport deposition [8], and so on. Among these methods,
electrochemical deposition is considered to be an ideal method for mass production of CdTe films
with easy operation and high material utilization [9,10]. There are several advantages for the
electrodeposition process. For example, it is easy to operate without high vacuum or a high temperature
environment. Both p-type and n-type CdTe have been easily deposited and electrodeposition potential
was found to be the key factor [11]. Novel morphologies, such as CdTe nanowires, can be deposited
easily by electrochemical deposition method [12,13]. ZnO/CdTe core–shell nanotube arrays have also
been synthesized by using a simple two-step electrochemical deposition strategy for solar energy water
splitting applications [14].

Even though electrodeposited CdTe thin films and their PEC properties have been reported [15],
the structure of CdTe photocathode still needs optimization for solar energy water splitting application.
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In fact, photoelectrochemical properties of CdTe can be enhanced by preparation of a CdTe/CdS PN
junction, which is contributive to the separation of photo-generated carriers [2]. A CdS layer can be
easily prepared on CdTe thin films. In this work, CdTe thin films were prepared by electrochemical
deposition method. The effect of deposition time to the physical and photoelectric properties of
CdTe thin films was studied. The PEC response properties of Pt/CdS/CdTe/FTO structure were
investigated under illumination of AM 1.5 G, which will be contributive to expand their applications
on photoelectric devices.

2. Experimental Details

2.1. Materials

Sodium tellurite (Na2TeO3, ≥99.99%), cadmium sulfate (CdSO4·8/3H2O, ≥99%), cadmium
chloride (CdCl2·2.5H2O, ≥99%), and trisodium citrate (Na3C6H5O7·2H2O, ≥99%) were purchased from
Sinopharm chemical LTD (Shanghai). In addition, sulfuric acid (98%) was used to adjust the pH levels
of reaction solution. All solutions were prepared by using distilled water.

2.2. Synthesis

Before depositing the CdTe films, FTO substrates were ultrasonically cleaned by acetone, ethanol,
and distilled water for 30 min, respectively. Cleaned FTO substrates were dried with N2 and then
placed in the oven for drying. Then, 0.1 mmol Na2TeO3, 1 mmol CdSO4·8/3H2O, and 3 mmol
Na3C6H5O7·2H2O were first dissolved in 100 mL distilled water under magnetic stirring. Here,
Na3C6H5O7·2H2O was mainly used to control the deposition rate [16]. The pH level of the solution
was adjusted to 2 by adding diluted sulfuric acid.

CdTe films were prepared by electrochemical deposition with a three-electrode configuration.
In this arrangement, FTO glass, Ag/AgCl in a saturated aqueous KCl solution, and a Pt wire served as
the working, reference, and counter electrodes, respectively. They were connected to the electrochemical
working station. The magnetic rotor in the solution was set at about 80 r/min, the deposition potential
was set to −0.6 V [17], and deposition times were set to 1 h, 1.5 h, 2 h, 2.5 h, respectively. After the
deposition, the as-deposited thin films were rinsed by distilled water, dried, and then collected.
Saturated CdCl2 ethanol solution was dropped onto the surface of CdTe thin films. An additional
annealing process was performed to CdTe thin films with CdCl2 ethanol solution at 350 ◦C in a vacuum
for 1 hour.

2.3. The Preparation of Pt/CdS/CdTe/FTO Structures

A layer of CdS film was grown on CdTe by chemical bath deposition method [18]. A total of
0.015 M CdSO4 and 1.5 M thiourea solutions were first prepared, respectively. Thirty-four milliliters of
deionized water, 5 mL CdSO4 solution, 5 mL thiourea solution, and 6.5 mL ammonia water were put
into a beaker. Then, a CdTe film was deposited on FTO and inserted into the solution maintaining at
60 ◦C for 8 min. After deposition, the sample was cleaned by distilled water and then dried in the air
at room temperature. A layer of 5 nm Pt was sputtered on the CdS surface by using SCD 500 sputter
coater (Bal-Tec, Capovani Brothers Inc., Scotia, NY, USA). The sputtering started when the vacuum
was lower than 10−5 mbar. The sputtering speed was set at 0.3 nm/s and the sputtering time was 17 s.

2.4. Characterizations

Structural properties and phase purities of CdTe thin film were examined by X-ray diffraction
(XRD, D/MAX2550, Rigaku Inc, Tokyo, Japan, with Cu-Kα radiation, λ = 0.15 nm) and Raman spectra
(JY-H800UV, Horiba, Ltd, Kyoto, Japan). Morphologies and compositions of CdTe thin films were
determined by scanning electron microscopy (SEM, FEI Sirion 200, Fei Company, Hillsboro, OR, USA).
The optical properties were studied by using a UV-vis spectrophotometer (Jasco UV-570, Jasco Inc.,
Tokyo, Japan). Under illumination of AM 1.5 G (100 mWcm−2), the PEC properties of CdTe/FTO
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and Pt/CdS/CdTe/FTO were studied in a 1 M Na2SO4 (pH = 1) solution. A CHI660B electrochemical
workstation (Chinese Science Day Ltd., Beijing, China) was used. A Pt plate and an Ag/AgCl rod were
used as counter-electrode and reference electrode, respectively.

3. Results and Discussions

3.1. Morphologies and Compositions of Deposited CdTe Thin Films

The morphological properties of CdTe thin films were tested by SEM. Figure 1a1–d1 proves that
the thicknesses of the CdTe thin films are increased with deposition time, going from approximately
1.08 µm to 2.70 µm. The cross-section morphological images indicate that some islanding are formed
and seem to be buried by the high deposition rate, and some restricted particles with definite sizes are
also formed and combined to form denser layers.
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Figure 1. (a1–d1) Cross-sectional and (a2–d2) top view SEM images of CdTe thin films grown on FTO
substrates with deposition times of 1 h, 1.5 h, 2 h, and 2.5 h, respectively.

There are some clusters and porous structures at the surface of the deposited CdTe thin films
in Figure 1a2–d2. The composition ratios of deposited CdTe thin films were estimated by EDS
measurements, as shown in Table 1.

Table 1. The atomic percents determined by EDS, average grain sizes calculated from XRD data, and the
band gaps calculated from UV-Vis diffuse-reflection spectra.

Deposition
Time (h)

The Atomic Percent of
Cd:Te (%)

Lattice
Spacing (nm)

Lattice
Parameter (nm)

Average Grain
Size (nm)

Band Gap
(eV)

1 (46.67 ± 0.51) : (53.33 ± 0.51) 0.3681 ± 0.0002 0.6375 ± 0.0002 30.9 ± 0.1 1.66 ± 0.02
1.5 (47.63 ± 0.51) : (52.37 ± 0.51) 0.3732 ± 0.0002 0.6465 ± 0.0002 36.5 ± 0.1 1.48 ± 0.02
2 (47.85 ± 0.51) : (52.15 ± 0.51) 0.3745 ± 0.0002 0.6486 ± 0.0002 40.1 ± 0.1 1.35 ± 0.02

2.5 (49.33 ± 0.51) : (50.67 ± 0.51) 0.3751 ± 0.0002 0.6497 ± 0.0002 40.1 ± 0.1 1.32 ± 0.02

Even though the CdCl2 annealing treatment can make Te in the film combine with Cd from CdCl2
to form CdTe, the ratios of Cd/Te of all the samples still indicate that Te-rich CdTe thin films were
obtained in our work.
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3.2. Structural Properties of Deposited CdTe Thin Films

The structural properties of the CdTe films were further investigated by XRD characterizations,
as shown in Figure 2a.
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Figure 2. (a) XRD patterns of CdTe thin films with deposition time of 1 h, 1.5 h, 2 h, and 2.5 h,
respectively; (b) Raman spectra of CdTe thin films with deposition time of 1 h, 1.5 h, 2 h, and 2.5 h,
respectively.

By comparison with the standard card (JCPDS 15-0770), it can be seen that the deposited CdTe
thin films have diffraction peaks at 2θ = 23.7◦, 39.2◦, 46.4◦, 56.8◦, 62.3◦, and 71.2◦, which correspond
to (111), (220), (311), (400), (331), and (422) planes of CdTe, respectively. Comparing with standard
PDF card (JCPDS 42-1445), it is speculated that the peaks at 2θ = 26.8◦, 33.6◦, 38◦, 51.8◦, and 65◦ may
be caused by substrate SnO2 [19,20]. Peaks at 2θ = 26.8◦, 38◦, 51.8◦, and 65◦ can also correspond
to TeO2 (JCPDS 42-1365). The CdTe thin films deposited with 1.5 h have strong diffraction peaks
on (111), (220), and (311) planes. Compared with XRD patterns of CdTe thin films deposited with
1 h, the miscellaneous peaks of the diffraction pattern are significantly reduced, which proves that
the quality of the prepared CdTe thin films is improved. The CdTe thin films deposited with 2 h
have strong diffraction peaks on the (111), (220), and (311) planes, and the diffraction intensity of the
miscellaneous peak is further reduced, which proves that the quality of the prepared CdTe thin films is
further improved. The XRD analysis of the thin films deposited with 2.5 h shows that the diffraction
peaks of planes (111), (220), and (311) are particularly strong, which perfectly corresponds to the peak
positions shown in PDF card (JCPDS 15-0770). According to the Debye Scherrer formula [21]:

D =
Kλ
βcosθ

(1)

where K is the Scherrer constant, λ is the wavelength of X-rays used (λ = 0.15 nm), β is the full-width
at half maximum (FWHM) of the diffraction peaks, and θ is Bragg’s angle. The average grain sizes
and lattice spacing of (111) plane can be calculated, as shown in Table 1. Compared with the card
of PDF (JCPDS 15-0770), it is found that the prepared thin films are of face-centric cubic structure,
and the crystalline space group is f-43 m, which is the same as the reported CdTe crystal structure.
Raman diffraction patterns of CdTe thin films deposited with different deposition time are shown
in Figure 2b. The Raman peaks at the position of 164 cm−1 and 327.5 cm−1 are consistent with the
reported Raman peaks of CdTe thin films [22,23]. All the deposited CdTe thin films also have peaks at
139.9 cm−1, which is a combination of TO (CdTe) and elemental Te [24]. It indicates again that Te-rich
CdTe thin films have been deposited in our work.
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3.3. Optical Properties of Deposited CdTe Thin Films

Figure 3 shows the UV-Vis diffuse-reflection spectra of CdTe thin films with deposition time of
1 h, 1.5 h, 2 h and 2.5 h, respectively. From the images, it can be seen that CdTe thin films have strong
absorption of visible light.
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Figure 3. (a) UV-Vis diffuse reflection spectra of CdTe thin films with deposition time of 1 h, 1.5 h, 2 h,
and 2.5 h, respectively; (b) CdTe band gap patterns with deposition time of 1 h, 1.5 h, 2 h, and 2.5 h,
respectively.

And the optical band gaps of the as-deposited thin films were calculated by diffuse-reflection
spectra according to the following equation [25]:

αhv = K
(
hv− Eg

)1/2
(2)

In the equation, α was the optical absorption coefficient, hv was the photoelectron energy, Eg was
the band gap width, and K was a constant of the material. According to the above equation, CdTe band
gaps were calculated as 1.66 eV, 1.48 eV, 1.35 eV, and 1.32 eV, as shown in Figure 3b. The data were
consistent with the previous literature reports [12,13].

3.4. Photoelectrochemical Properties of Deposited CdTe Thin Films

AC impedance test was carried out and the results were shown in Figure 4a1–a4.
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Figure 4. Impedance test images with deposition time of (a1) 1 h, (a2) 1.5 h, (a3) 2 h, and (a4) 2.5 h,
respectively.

The test was performed with a three-electrode configuration. Solution resistance Ru between
reference electrode and working electrode, double layer capacitance Cd, and charge transfer resistance
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Rct can be obtained from the test. Rct and Ru of four groups of CdTe thin films in the system were
calculated by following formula [26]:

Z′ = Rs = Ru +
Rct

1 +ω2Cd
2Rct2 (3)

Z′′ =
1
ωCs

=
ωCdRct

2

1 +ω2Cd
2Rct2 (4)

whereωwas the frequency, Z’ was the real part of the impedance, Z” was the real part of the impedance.
As shown in Table 2, the change of Ru is not obvious. Generally speaking, the test solution does not
change, nor does Ru. However, there are errors in the measurements, such as the distance between
electrodes and the samples in our experiments, the direction of the sample according to the counter
electrode, and so on. As deposition time increases, Rct decreases, which may be caused by film
thickening and grain size enlargement.

Table 2. Measured AC impedance data and photocurrent data of CdTe prepared at different
deposition time.

Deposition Time
(h)

Ru
(Ω)

Rct
(Ω)

Photocurrent
(µAcm−2)

Dark Current
(µAcm−2)

Difference
(µAcm−2)

1 23.2 ± 0.2 56.3 ± 0.1 22.0 ± 0.1 4.0 ± 0.1 18.0 ± 0.1
1.5 21.3 ± 0.2 36.7 ± 0.1 24.9 ± 0.1 4.8 ± 0.1 20.1 ± 0.1
2 23.8 ± 0.2 17.8 ± 0.1 24.7 ± 0.1 7.4 ± 0.1 17.3 ± 0.1

2.5 20.1 ± 0.2 16.2 ± 0.1 25.2 ± 0.1 8.9 ± 0.1 16.3 ± 0.1

Under chopped AM 1.5 G light illumination (Newport, Oriel Instruments, optical density =

100 mWcm−2), the PEC properties of the films were measured in 0.5 mol/L Na2SO4 solution by
an electrochemical work station (CHI 660B). The tests were measured from −0.3 V to 0.3 V and the
scanning rate was 0.01 V/s. Finally, the relationship between current and voltage (I–V curves) was
presented in Figure 5a.
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Figure 5. (a1–a4) Current-potential curves of CdTe thin films with deposition time of 1 h, 1.5 h, 2 h,
and 2.5 h, respectively; (b1–b4) current–time curve of CdTe thin films with deposition time of 1 h, 1.5 h,
2 h, and 2.5 h, respectively.

It can be seen from the I–V curves that the maximum current difference appears at −0.3 V and this
potential is negative, which proves that the prepared CdTe film is p-type material. In Figure 5b, with the
increase of deposition time, the photocurrent tends to stabilize at around 25 µAcm−2. By comparing
the difference of photo and dark current in Table 2, it can be found that the true photo response current
first increases and then decreases with the increasing of deposition time. It can be concluded that
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maximum current can be achieved when the deposition time is 1.5 h and 2 h. The photocurrents
are first increased and then decreased, rather than increasing with the deposition time. As known,
when the light is irradiated on the semiconductor film, electron and hole pairs are excited inside the
semiconductor film. If the film is too thick, the electron–hole pairs will be more likely to recombine
before they move to the surface of the films, which will decrease the PEC performance of deposited
CdTe thin films [27]. 15 nm CdS film was grown on CdTe film by chemical bath deposition and a 5 nm
Pt layer was sputtered on the CdS surface using a sputtering method. The PEC properties of the
Pt/CdS/CdTe/FTO structure were characterized, as shown in Figure 6.
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The photocurrents are enhanced greatly and the difference of the light-dark current is increased
to 240 µAcm−2. The biggest difference of the light–dark current of our deposited CdTe thin film is
20.1 µAcm−2. The difference of the light–dark current is enhanced about 12 times after fabrication of the
Pt/CdS/CdTe/FTO structure, which demonstrates that this structure can improve the PEC performance
of CdTe thin films greatly.

4. Conclusions

Te-rich CdTe films have been deposited with the electrodeposition method. SEM studies
have shown that the film thickness increases with the deposition time, and the deposition time
should be controlled at about 1.5 h–2 h to obtain films with good morphology. The annealed CdTe
thin films deposited at 1.5 h–2 h have the largest photocurrent and have good PEC performance.
The Pt/CdS/CdTe/FTO structure can improve the PEC properties greatly, and the highest photocurrent
of 240 µAcm−2 has been achieved.
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