On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration
Abstract
:1. Introduction
2. Sensor Configuration and Theoretical Insights
3. Results and Discussion
3.1. Sensor Probe with i) SiO2 and ii) SiC Gratings
3.2. Performance in i) Angular and ii) Intensity Interrogation Modes (AIM and IIM)
3.3. Comparison with the Present State-of-the-Art Related to Cortisol Sensors, Steps Needed for Possible Practical Implementation and Possible Limitations
- Multilayered structure was deposited over the commercially available fiber (discussed further). In general, ion sputtering vapor system was used to deposit Ag layer over bare fiber. Further, deposition of SiO2 layer could be done by using appropriate techniques, such as chemical or physical vapor deposition methods.
- A monochromatic light source (preferably a laser diode, λ = 830 nm) attached with a polarizer was fixed on a rotary stage in order to launch the light into the fiber core. In the angular interrogation method, in order to measure the angular shift of the monochromatic beam, a position-sensitive detector (PSD) was used. At present, 0.001° was the smallest angular shift that can be actually detected [36].
- A wavelength selective photodetector (here, λ = 830 nm) measured the transmitted power, or power meter could be used to measure the PL in dB.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ray, P.; Steckl, A.J. Label-Free Optical Detection of Multiple Biomarkers in Sweat, Plasma, Urine, and Saliva. ACS Sensors 2019, 4, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain. Behav. Immun. 2007, 21, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Steckl, A.J.; Ray, P. Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection. ACS Sensors 2018, 3, 2025–2044. [Google Scholar] [CrossRef] [PubMed]
- Corbalán-Tutau, D.; Madrid, J.A.; Nicolás, F.; Garaulet, M. Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol. Behav. 2014, 123, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Ljubijankić, N.; Popović-Javorić, R.; Šćeta, S. Daily fluctuation of cortisol in the saliva and serum of healthy persons. Bosn. J. Basic Med. Sci. 2008, 8, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Waseem, M. Addison Disease. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441994/ (accessed on 10 October 2019).
- Raff, H.; Findling, J.W. A Physiologic Approach to Diagnosis of the Cushing Syndrome. Ann. Intern. Med. 2003, 138, 980–991. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Liu, X.; Hsu, S.P.C.; Liu, W.-C.; Wang, Y.; Liu, X.; Lo, C.; Lin, Y.-C.; Nabilla, S.C.; Li, Z.; Hong, Y.; et al. Salivary Electrochemical Cortisol Biosensor Based on Tin Disulfide Nanoflakes. Nanoscale Res. Lett. 2019, 14, 189. [Google Scholar] [CrossRef]
- Arya, S.K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Antibody modified gold micro array electrode based electrochemical immunosensor for ultrasensitive detection of cortisol in saliva and ISF. Proc. Eng. 2010, 5, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.C.; Soelberg, S.D.; Near, S.; Furlong, C.E. Detection of Cortisol in Saliva with a Flow-Filtered, Portable Surface Plasmon Resonance Biosensor System. Anal. Chem. 2008, 80, 6747–6751. [Google Scholar] [CrossRef] [Green Version]
- Tlili, C.; Myung, N.V.; Shetty, V.; Mulchandani, A. Label-free, chemiresistor immunosensor for stress biomarker cortisol in saliva. Biosens. Bioelectron. 2011, 26, 4382–4386. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.; Cui, D. Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip. Micro Nano Lett. 2016, 11, 20–23. [Google Scholar] [CrossRef]
- Frasconi, M.; Mazzarino, M.; Botrè, F.; Mazzei, F. Surface plasmon resonance immunosensor for cortisol and cortisone determination. Anal. Bioanal. Chem. 2009, 394, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Jung, J.; Kim, Y.H.; Kwon, D.; Kim, B.G.; Na, H.B.; Lee, H.H. Surface Plasmon Resonance Characteristics of Au Nanoparticles Layered Sensor Chip for Direct Detection of Stress Hormone Conjugated by Nanoparticles. Biochip J. 2018, 12, 249–256. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Wei, W.; Deng, S.; Xu, C.; Cui, D. An Automatic Miniature Surface Plasmon Resonance System for Cortisol Detection. Proc. Technol. 2017, 27, 89–90. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sharma, A.K. Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer. Photonics Nanostruct. Fundam. Appl. 2018, 28, 94–99. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. Fluoride Fiber-Based Plasmonic Biosensor with Two-Dimensional Material Heterostructures: Enhancement of Overall Figure-of-Merit via Optimization of Radiation Damping in Near Infrared Region. Materials 2019, 12, 1542. [Google Scholar] [CrossRef] [Green Version]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens. Bioelectron. 2017, 87, 178–186. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, M.; Yan, W.; Li, Z.; Yang, F. Si-grating-assisted SPR sensor with high figure of merit based on Fabry–Pérot cavity. Opt. Commun. 2020, 457, 124641. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K. Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: Simulated performance analysis in optical communication band. J. Opt. Soc. Am. B 2019, 36, F25. [Google Scholar] [CrossRef]
- Sun, P.; Zhou, C.; Jia, W.; Wang, J.; Xiang, C.; Xie, Y.; Zhao, D. Narrowband absorber based on magnetic dipole resonances in two-dimensional metal–dielectric grating for sensing. Opt. Commun. 2020, 459, 124946. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R. All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin. Opt. Laser Technol. 2018, 101, 162–171. [Google Scholar] [CrossRef]
- Zhao, X.-W.; Wang, Q. Mini review: Recent advances in long period fiber grating biological and chemical sensors. Instrum. Sci. Technol. 2019, 47, 140–169. [Google Scholar] [CrossRef]
- Tabassum, N.; Kotha, M.; Kaushik, V.; Ford, B.; Dey, S.; Crawford, E.; Nikas, V.; Gallis, S. On-demand CMOS-compatible fabrication of ultrathin self-aligned SiC nanowire arrays. Nanomaterials 2018, 8, 906. [Google Scholar] [CrossRef] [Green Version]
- 830nm Laser Diodes. Available online: https://www.laserdiodesource.com/laser-diodes-filtered-by-wavelength/830nm-laser-diodes (accessed on 30 October 2019).
- Laser Diodes (518303). Available online: https://www.first-sensor.com/en/products/optical-sensors/laser-diodes/ (accessed on 26 March 2020).
- Atayeva, S.U.; Mekhtiyeva, S.I.; Isayev, A.I. Dispersion of the refractive index of a samarium-doped Se95 Te5 chalcogenide glassy semiconductor. Semiconductors 2015, 49, 949–952. [Google Scholar] [CrossRef]
- Ishigure, T.; Koike, Y.; Fleming, J.W. Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties. J. Light. Technol. 2000, 18, 178–184. [Google Scholar] [CrossRef]
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Esfandiyari, M.; Norouzi, M.; Haghdoust, P.; Jarchi, S. Study of a Surface Plasmon Resonance Optical Fiber Sensor Based on Periodically Grating and Graphene. Silicon 2018, 10, 2711–2716. [Google Scholar] [CrossRef]
- Larruquert, J.I.; Pérez-Marín, A.P.; García-Cortés, S.; Rodríguez-de Marcos, L.; Aznárez, J.A.; Méndez, J.A. Self-consistent optical constants of SiC thin films. J. Opt. Soc. Am. A 2011, 28, 2340. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Kaur, B. Optical Fiber Technology Chalcogenide fiber-optic SPR chemical sensor with MoS 2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Opt. Fiber Technol. 2018, 43, 163–168. [Google Scholar] [CrossRef]
- Hammad, H.F.; Antar, Y.M.M.; Freundorfer, A.P.; Sayer, M. A new dielectric grating antenna at millimeter wave frequency. IEEE Trans. Antennas Propag. 2004, 52, 36–44. [Google Scholar] [CrossRef]
- Mao, Y.; Bao, Y.; Wang, W.; Li, Z.; Li, F.; Niu, L. Development and Application of Time-Resolved Surface Plasmon Resonance Spectrometer. Am. J. Anal. Chem. 2011, 2, 589–604. [Google Scholar] [CrossRef] [Green Version]
- OPTICAL POWER METERS. Available online: https://www.fiberoptics4sale.com/blogs/archive-posts/95051334 -optical-power-meters-the-most-import-thing-you-need-to-know-about-fiber-optic-power-meters#targetText=Optical Power Meter Types&targetText=Lower cost field optical power,chosen according to the (accessed on 22 February 2020).
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag: Berlin, Germany, 1988; Volume 111, ISBN 978-3-540-17363-2. [Google Scholar]
- Vasudev, A.; Kaushik, A.; Tomizawa, Y.; Norena, N.; Bhansali, S. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens. Actuators B Chem. 2013, 182, 139–146. [Google Scholar] [CrossRef]
- Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
- Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 2019, 283, 79–86. [Google Scholar] [CrossRef]
- ZBLAN Fluoride Glass Fibers & Cables. Available online: https://www.fiberlabs.com/fiber_index/ (accessed on 24 February 2020).
- Ghatak, A.; Thyagarajan, K. Introduction to Fiber Optics; Cambridge University Press: Cambridge, CA, USA, 1998. [Google Scholar]
- Dwivedi, Y.S.; Sharma, A.K.; Gupta, B.D. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: A theoretical study. App. Opt. 2007, 46, 4563–4569. [Google Scholar] [CrossRef]
- Mota, V.C.; Martins, C.I.M.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J. Water cortisol and testosterone in Nile tilapia (Oreochromis niloticus) recirculating aquaculture systems. Aquaculture 2017, 468, 255–261. [Google Scholar] [CrossRef]
Layer | Refractive Index | Ref |
---|---|---|
Se95Te5Sm0.25 core | 1.6604 | [29] |
PF homopolymer | 1.3377 | [30] |
Ag | 0.1795 + 5.2369i | [31] |
SiO2 | 1.5331 | [32] |
SiC | 3.3067 + 0.14839i | [33] |
Cc (ng/mL) | 0.36 | 0.72 | 1.80 | 3.60 | 4.50 | |
RI [11] | 1.3297 | 1.3300 | 1.3305 | 1.3310 | 1.3311 | |
αSPR (o) | a | 64.365 | 64.306 | 64.201 | 64.083 | 64.059 |
b | 29.782 | 29.722 | 29.617 | 29.498 | 29.472 | |
PLmax (dB) | a | 1043.26 | 1015.70 | 974.03 | 934.06 | 926.87 |
b | 515.65 | 505.30 | 490.19 | 476.35 | 473.73 | |
FWHM (°) | a | 0.088 | 0.097 | 0.112 | 0.128 | 0.132 |
b | 0.561 | 0.601 | 0.664 | 0.727 | 0.739 |
Performance Parameter | SiO2 gratings; tg = 20 nm and tAg 47.10 nm | SiC gratings; tg = 29 nm and tAg 38.30 nm | |
---|---|---|---|
Sensitivity (AIM) | Average SA in deg. (ng/mL)−1 | 0.1092 | 0.1106 |
Sensitivity (IIM) | Average SI in dB(ng/mL)−1 | 46.615 | 17.136 |
FOM (ng/mL)−1 | 0.9330 | 0.1610 | |
LOD (ng/mL) | AIM | 0.0099 | 0.0098 |
IIM | 2.2558 × 10−5 | 6.8174 × 10−5 |
Ref. | Modalities | LOD |
---|---|---|
Chen et al. [13] | Denaturalized bovine serum albumin (dBSA)-SPR chip | 1 ng/mL |
Vasudev et al. [39] | LTCC-based microfluidic system | 10 pg/mL |
Kämäräinen et al. [40] | Electrochemical immunosensor | 0.6 ng/mL |
Dalirirada and Steckl [41] | Aptamer functionalized Au nanoparticles | 1 ng/mL |
Usha et al. [20] | LMR and ZnO/PPY nanocomposite of MIP | 25.9 fg/mL |
This work | SiO2 Grating based fiber SPR sensor | - |
(a) angular mode (b) intensity mode | 9.9 pg/mL 22.6 fg/mL | |
SiC Grating based fiber SPR sensor | - | |
(a) angular mode (b) intensity mode | 9.8 pg/mL 68.17 fg/mL |
Cc (ng/mL) | αspr (Deg.) | PLmax (dB) | FOM (ng/mL)−1 | LOD (ng/mL) | |
---|---|---|---|---|---|
Angular Mode | Intensity Mode | ||||
0.36 | 32.872 | 549.618 | - | - | - |
0.72 | 32.824 | 539.130 | 1.127 | 0.0075 | 3.43 × 10−5 |
1.80 | 32.734 | 522.199 | 0.744 | 0.0104 | 5.25 × 10−5 |
3.60 | 32.634 | 506.298 | 0.514 | 0.0136 | 7.47 × 10−5 |
4.50 | 32.612 | 502.855 | 0.434 | 0.0159 | 8.85 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, A.K.; Sharma, A.K.; Marques, C. On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration. Materials 2020, 13, 1623. https://doi.org/10.3390/ma13071623
Pandey AK, Sharma AK, Marques C. On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration. Materials. 2020; 13(7):1623. https://doi.org/10.3390/ma13071623
Chicago/Turabian StylePandey, Ankit Kumar, Anuj K. Sharma, and Carlos Marques. 2020. "On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration" Materials 13, no. 7: 1623. https://doi.org/10.3390/ma13071623
APA StylePandey, A. K., Sharma, A. K., & Marques, C. (2020). On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration. Materials, 13(7), 1623. https://doi.org/10.3390/ma13071623