Hybridized Love Waves in a Guiding Layer Supporting an Array of Plates with Decorative Endings
Abstract
:1. Introduction
- -
- Material properties: mass density and shear modulus , with subscripts “S” for the substrate, “L” for the guiding Layer, “P” for the Plates, and “b,t” for the heterogeneities at the bottom and at the top of the plates.
- -
- Geometrical parameters: the layer has a total height with occupied by the heterogeneities. The array of plates is periodic with spacing ℓ, with plate thickness and total height ( occupied by the heterogeneities). The heterogeneities at the bottom and top of the plates have surfaces and .
2. Summary of the Main Results
2.1. Effective Model
2.2. Effective Energy
3. Hybrid Love Waves in a Guiding Layer Supporting Decorated Plates
3.1. Two Reference Solutions
3.1.1. Love Waves and Modified Love Waves
3.1.2. SPPs and Modified SPPs
3.2. Dispersion Relation of Hybridized Love Waves
3.3. Validation of the Homogenized Solution
3.4. Energies in the Actual/Homogenized Problems
4. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Asymptotic Analysis
Appendix A.1. The Homogenized Wave Equation
Appendix A.2. The Boundary Condition at the Top of the Plates
Appendix A.3. Jump Conditions
Appendix B. Properties of the Effective Parameters
Appendix B.1. α2 + β1 = 0
Appendix B.2. ℓb > 0
Appendix B.3. Lb ≥ 0
References
- Housner, G.W. Interaction of building and ground during an earthquake. Bull. Seismol. Soc. Am. 1957, 47, 179–186. [Google Scholar]
- Bielak, J. Dynamic behaviour of structures with embedded foundations. Earthq. Eng. Struct. Dyn. 1975, 3, 259–274. [Google Scholar] [CrossRef]
- Clouteau, D.; Aubry, D. Modification of the ground motion in dense urban areas. J. Comput. Acoust. 2001, 9, 1659–1675. [Google Scholar] [CrossRef]
- Kham, M.; Semblat, J.-F.; Bard, P.Y.; Dangla, P. Seismic site–city interaction: Main governing phenomena through simplified numerical models. Bull. Seismol. Soc. Am. 2006, 96, 1934–1951. [Google Scholar] [CrossRef]
- Guéguen, P.; Colombi, A. Experimental and numerical evidence of the clustering effect of structures on their response during an earthquake: A case study of three identical towers in the city of Grenoble, France. Bull. Seismol. Soc. Am. 2016, 106, 2855–2864. [Google Scholar] [CrossRef]
- Guéguen, P.; Bard, P.Y.; Chavez-Garcia, F.J. Site-city seismic interaction in Mexico city–like environments: An analytical study. Bull. Seismol. Soc. Am. 2002, 92, 794–811. [Google Scholar] [CrossRef]
- Boutin, C.; Roussillon, P. Assessment of the urbanization effect on seismic response. Bull. Seismol. Soc. Am. 2004, 94, 251–268. [Google Scholar] [CrossRef]
- Ghergu, M.; Ionescu, I.R. Structure-soil-structure coupling in seismic excitation and city effect. Int. J. Eng. Sci. 2009, 47, 342–354. [Google Scholar] [CrossRef]
- Schwan, L.; Boutin, C.; Padrón, L.A.; Dietz, M.S.; Bard, P.Y.; Taylor, C. Site-city interaction: Theoretical, numerical and experimental crossed-analysis. Geophys. J. Int. 2016, 205, 1006–1031. [Google Scholar] [CrossRef] [Green Version]
- Brûlé, S.; Enoch, S.; Guenneau, S. Structured soils under dynamic loading: The metamaterials in Geotechnics. Rev. Fr. Geotech. 2017, 151, 4. [Google Scholar] [CrossRef]
- Ungureanu, B.; Guenneau, S.; Achaoui, Y.; Diatta, A.; Farhat, M.; Hutridurga, H.; Craster, R.V.; Enoch, S.; Brûlé, S. The influence of building interactions on seismic and elastic body waves. EPJ Appl. Metamat. 2019, 6, 18. [Google Scholar] [CrossRef]
- Cacciola, P.; Tombari, A. Vibrating barrier: A novel device for the passive control of structures under ground motion. Proc. R. Soc. A 2015, 471, 20150075. [Google Scholar] [CrossRef]
- Dertimanis, V.K.; Antoniadis, I.A.; Chatzi, E.N. Feasibility Analysis on the Attenuation of Strong Ground Motions Using Finite Periodic Lattices of Mass-in-Mass Barriers. J. Eng. Mech. 2016, 142, 04016060. [Google Scholar] [CrossRef]
- Palermo, A.; Krodel, S.; Marzani, A.; Daraio, C. Engineered metabarrier as shield from seismic surface waves. Sci. Rep. 2016, 6, 39356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, A.; Marzani, A. Control of Love waves by resonant metasurfaces. Sci. Rep. 2018, 8, 7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombi, A.; Colquitt, D.J.; Roux, P.; Guenneau, S.; Craster, R.V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 2016, 6, 27717. [Google Scholar] [CrossRef] [Green Version]
- Colquitt, D.J.; Colombi, A.; Craster, R.V.; Roux, P.; Guenneau, S. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 2017, 99, 379–393. [Google Scholar] [CrossRef]
- Maurel, A.; Marigo, J.-J.; Pham, K.; Guenneau, S. Conversion of Love waves in a forest of trees. Phys. Rev. B 2018, 98, 134311. [Google Scholar] [CrossRef] [Green Version]
- Kerders, L.; Allard, J.F.; Lauriks, W. Ultrasonic surface waves above rectangular-groove gratings. J. Acoust. Soc. Am. 1998, 103, 2730–2733. [Google Scholar] [CrossRef]
- Hurd, R.A. The propagation of an electromagnetic wave along an infinite corrugated surface. Can. J. Phys. 1954, 32, 727–734. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- McPhedran, R.C.; Botten, L.C.; Bliek, P.; Deleuil, R.; Maystre, D. Inductive grids in the region of diffraction anomalies: Theory, experiment and applications. IEEE Trans. Microw. Theory Tech. 1980, 28, 1119–1125. [Google Scholar]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Brûlé, S.; Enoch, S.; Guenneau, S. Role of nanophotonics in the birth of seismic megastructures. Nanophotonics 2019, 8, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Lott, M.; Roux, P.; Garambois, S.; Guéguen, P.; Colombi, A. Evidence of metamaterial physics at the geophysics scale: The METAFORET experiment. Geophys. J. Int. 2019, 220, 1330–1339. [Google Scholar] [CrossRef]
- Mercier, J.F.; Cordero, M.L.; Félix, S.; Ourir, A.; Maurel, A. Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects. Proc. R. Soc. A 2015, 471, 20150472. [Google Scholar] [CrossRef]
- Norris, A.N.; Su, X. Enhanced acoustic transmission through a slanted grating. C. R. Mécanique 2015, 343, 622–634. [Google Scholar] [CrossRef]
- Achenbach, J.D. Wave Propagation in Elastic Solids; North-Holland: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Maurel, A.; Marigo, J.-J.; Mercier, J.-F.; Pham, K. Modelling resonant arrays of the Helmholtz type in the time domain. Proc. R. Soc. A 2018, 474, 20170894. [Google Scholar] [CrossRef] [Green Version]
- Marigo, J.-J.; Maurel, A.; Pham, K.; Sbitti, A. Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves. J. Elast. 2017, 128, 265–289. [Google Scholar] [CrossRef] [Green Version]
- Maurel, A.; Marigo, J.-J.; Pham, K. Effective boundary condition for the reflection of shear waves at the periodic rough boundary of an elastic body. Vietnam J. Mech. 2018, 40, 303–323. [Google Scholar] [CrossRef]
- Bodet, L.; Dhemaied, A.; Martin, R.; Mourgues, R.; Rejiba, F.; Tournat, V. Small-scale physical modeling of seismic-wave propagation using unconsolidated granular media. Geophysics 2014, 79, T323. [Google Scholar] [CrossRef]
- Palermo, A.; Krödel, S.; Matlack, K.H.; Zaccherini, R.; Dertimanis, V.K.; Chatzi, E.N.; Marzani, A.; Daraio, C. Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface. Phys. Rev. Appl. 2018, 9, 054026. [Google Scholar] [CrossRef] [Green Version]
Substrate | Layer | Plate | Bottom | Top |
---|---|---|---|---|
= 2000 | = 72 | = 14.4 | = 1600 | = 1600 |
= 2000 | = 1800 | = 250 | = 2500 | = 2500 |
= 1000 | = 200 | = 240 | = 800 | = 800 |
Coeff. in (5) | ||||||
---|---|---|---|---|---|---|
0 | 2500 | 0.1324 | 0.0120 | 0 | ||
10 | 2500 | 0.0511 | 22.2357 | 0 |
Love | 8 | 0 | 8 | 0 | 0 | 0 |
Modified Love | 7 | 1 | 8 | 0 | 0 | 0 |
Case 1 | 8 | 0 | 8 | 12 | 0 | 12 |
Case 2 | 8 | 0 | 8 | 11 | 1 | 12 |
Case 3 | 7 | 1 | 8 | 12 | 0 | 12 |
Case 4 | 7 | 1 | 8 | 11 | 1 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, K.; Maurel, A.; Félix, S.; Guenneau, S. Hybridized Love Waves in a Guiding Layer Supporting an Array of Plates with Decorative Endings. Materials 2020, 13, 1632. https://doi.org/10.3390/ma13071632
Pham K, Maurel A, Félix S, Guenneau S. Hybridized Love Waves in a Guiding Layer Supporting an Array of Plates with Decorative Endings. Materials. 2020; 13(7):1632. https://doi.org/10.3390/ma13071632
Chicago/Turabian StylePham, Kim, Agnès Maurel, Simon Félix, and Sébastien Guenneau. 2020. "Hybridized Love Waves in a Guiding Layer Supporting an Array of Plates with Decorative Endings" Materials 13, no. 7: 1632. https://doi.org/10.3390/ma13071632
APA StylePham, K., Maurel, A., Félix, S., & Guenneau, S. (2020). Hybridized Love Waves in a Guiding Layer Supporting an Array of Plates with Decorative Endings. Materials, 13(7), 1632. https://doi.org/10.3390/ma13071632