Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UPAC. Compendium of Chemical Terminology (the "Gold Book"), 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997; ISBN 0-9678550-9-8. Last update: 2014-02-24; version: 2.3.3. [Google Scholar] [CrossRef]
- James, D.K.; Tour, J.M. Graphene: Powder, flakes, ribbons and sheets. Acc. Chem. Res. 2013, 46, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Skoda, M.; Dudek, I.; Jarosz, A.; Szukiewicz, D. Graphene: One material, many possibilities—Application difficulties in biological systems. J. Nanomater. 2014. [Google Scholar] [CrossRef]
- Granzier-Nakajima, Т.; Fujisawa, К.; Anil, V.; Terrones, M.; Yeh, Y.-T. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. J. Nanomater. 2019, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. Growth of graphene from food, insects and waste. ACS Nano 2011, 5, 7601–7607. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef]
- Khan, A.; Islam, S.M.; Ahmed, S.; Kumar, R.R.; Habib, M.R.; Huang, К.; Hu, M.; Yu, Х.; Yang, D. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Nature 2018, 5, 1800050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, S.P.; Tsao, H.N.; Feng, X.L.; Müllen, К. Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors. Adv. Mater. 2009, 21, 3488–3491. [Google Scholar] [CrossRef]
- Jones, J.D.; Mahajan, K.K.; Williams, W.H.; Ectan, P.A.; Mo, Y.; Perez, J.M. Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon 2010, 48, 2335–2340. [Google Scholar] [CrossRef]
- Yuan, G.; Lin, D.; Wang, Y.; Huang, X.; Chen, W.; Xie, X.; Zong, J.; Yuan, Q.-Q.; Zheng, H.; Wang, D.; et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208. [Google Scholar] [CrossRef]
- Tatarova, E.; Bundaleska, N.; Sarrette, J.P.; Ferreira, C.M. Plasmas for environmental issues: From hydrogen production to 2D materials assembly. Plasma Sources Sci. Technol. 2014, 23, 063002. [Google Scholar] [CrossRef]
- Ostrikov, K.; Murphy, A.В. Plasma-aided nanofabrication: Where is the cutting edge? J. Phys. D Appl. Phys. 2007, 40, 2223–2241. [Google Scholar] [CrossRef]
- Mendoza-Gonzalez, N.Y.; Morsli, M.E.; Proulx, P. Production of nanoparticles in thermal plasmas: A model including evaporation, nucleation, condensation and fractal aggregation. J. Thermal. Spray. Technol. 2007, 17, 533–550. [Google Scholar] [CrossRef]
- Girshick, S.L.; Chiu, C.-P. Homogeneous nucleation of particles from the vapor phase in thermal plasma synthesis. Plasma Chem. Plasma Process. 1989, 9, 355–369. [Google Scholar] [CrossRef]
- Tanaka, Y. Synthesis of nanosize particles in thermal plasmas. In Handbook of Thermal Science and Engineering; Kulacki, F., Ed.; Springer: Cham, Germany, 2018; pp. 2791–2828. [Google Scholar] [CrossRef]
- Levchenko, L.; Ostrikov, K. Nanostructures of various dimensionalities from plasma and neutral fluxes. J. Phys. D Appl. Phys. 2007, 40, 2308–2319. [Google Scholar] [CrossRef]
- Kim, K.; Heo, S.B.; Gu, G.; Suh, J.S. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system. Nanotechnology 2010, 21, 095601. [Google Scholar] [CrossRef]
- Amirov, R.; Shavelkina, M.; Alihanov, N.; Shkolnikov, E.; Tyuftyaev, A.; Vorob’eva, N. Direct synthesis of porous multilayer graphene materials using thermal plasma at low pressure. J. Nanomater. 2015, 2015, 724508. [Google Scholar] [CrossRef] [Green Version]
- Tsyganov, D.; Bundaleska, N.; Tatarova, E.; Dias, A.; Henriques, J.; Rego, A.; Ferraria, A.; Abrashev, M.V.; Dias, F.M.; Luhrs, C.C.; et al. On the plasma-based growth of ’flowing’ graphene sheets at atmospheric pressure conditions. Plasma Sources Sci. Technol. 2016, 25, 015013. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Vinodgopal, К.; Dai, G.-P. Large-area synthesis and growth mechanism of graphene by chemical vapor deposition. Chem. Vap. Depos. Nanotechnol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Narula, U.; Tan, C.M.; Lai, C.S. Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Sci. Rep. 2017, 7, 44112. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Liu, W.-W.; Chai, S.-P.; Mohamed, A.R.; Aziz, A.; Khe, C.-S.; Hidayah, N.M.S.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693. [Google Scholar] [CrossRef]
- Khalilov, U.; Bogaerts, A.; Neyts, Е.C. Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors. Nanoscale 2014, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Seo, J.-H.; Nam, J.-S.; Ju, W.T.; Hong, S.H. Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. IEEE Trans. Plasma Sci. 2005, 33, 813–823. [Google Scholar] [CrossRef]
- Fincke, J.R.; Anderson, R.P.; Hyde, T.A.; Detering, B.A. Plasma pyrolysis of methane to hydrogen and carbon black. Ind. Eng. Chem. Res. 2002, 41, 1425–1435. [Google Scholar] [CrossRef]
- Norinaga, K.; Deutschmann, O. Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Ind. Eng. Chem. Res. 2007, 46, 3547–3557. [Google Scholar] [CrossRef]
- Tesner, P.A.; Shurupov, S.V. Some physico-chemical parameters of soot formation during pyrolysis of methane and methane-acetylene and methane-benzene mixtures. Symp. Int. Combust. 1994, 25, 653–659. [Google Scholar] [CrossRef]
- Shavelkina, M.B.; Ivanov, P.P.; Bocharov, A.N.; Amirov, R.K. 1D modeling of the equilibrium plasma flow in the scope of direct current plasma torch assisted graphene synthesis. J. Phys. D Appl. Phys. 2019, 52, 495202. [Google Scholar] [CrossRef]
- Dente, M.; Bozzano, G.; Faravelli, T.; Marongiu, A.; Pierucci, S.; Ranzi, E. Kinetic Modelling of Pyrolysis Processes in Gas and Condensed Phase. Adv. Chem. Eng. 2007, 32, 51–166. [Google Scholar] [CrossRef]
- Philipps, V.; Vietzke, E.; Erdweg, M.; Flaskamp, K. Thermal desorption of hydrogen and various hydrocarbons from graphite bombarded with thermal and energetic hydrogen. J. Nucl. Mater. 1987, 145, 292–296. [Google Scholar] [CrossRef]
- Denisov, E.A.; Kompaniets, T.N.; Kurdyumov, A.A.; Mazaev, S.N. Atomic hydrogen interaction with various graphite types. Plasma Devices Oper. 1998, 6, 265–269. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Jorio, A.; Dresselhaus, M.S.; Saito, R.; Dresselhaus, G. Raman Spectroscopy in Graphene Related System; Wiley-VCH: Weinheim, Germany, 2011; pp. 1–354. [Google Scholar]
- Chen, F.; Liu, J.; Chen, H.; Yan, C. Study on hydrogen evolution reaction at a graphite electrode in the all-vanadium redox flow battery. Int. J. Electrochem. Sci. 2012, 7, 3750–3764. Available online: http://www.electrochemsci.org/papers/vol7/7043750.pdf (accessed on 3 December 2011).
- Subrahmanyam, K.S.; Panchakarla, L.S.; Govindaraj, A.; Rao, C.N.R. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 2009, 113, 4257–4259. [Google Scholar] [CrossRef]
- Belov, G.V.; Iorish, V.S.; Yungman, V.S. Simulation of equilibrium states of thermodynamic systems using ivtantermo for windows. High Temp. 2000, 38, 191–196. [Google Scholar] [CrossRef]
- Subramaniam, V.; Underwood, T.C.; Raja, L.L.; Cappelli, M.A. Computational and experimental investigation of plasma deflagration jets and detonation shocks in Coaxial plasma accelerators. Plasma Sources Sci. Technol. 2018, 27, 2. [Google Scholar] [CrossRef]
- Kozlov, A.N.; Konovalov, V.S. Pulsating flow regimes of ionizing gas in coaxial plasma accelerators. KIAM Preprint M.V. Keldysh. 2014, 1, 28, ISSN 2071-2901. Available online: https://keldysh.ru/papers/2014/prep2014_01.pdf (accessed on 4 April 2020). (In Russian).
- Batenin, V.M.; Bityurin, V.A.; Zhelnin, V.A.; Ivanov, P.P.; Medin, S.A.; Lyubimov, G.A.; Satanovsky, V.R.; Turovets, V.L. Gas-dynamic and electrical characteristics of MHD generator according to data from physical and numerical experiments -RM channel of the U-25 device. High Temp. 1983, 21, 438–447. (In Russian) [Google Scholar]
- Wang, C.; Sun, L.; Dai, X.; Li, D.; Chen, X.; Xia, W.; Xia, W. Continuous Synthesis of Graphene Nano-Flakes by Magnetically Rotating Arc at Atmospheric Pressure. Carbon 2019, 148, 394–402. [Google Scholar] [CrossRef]
- Zhong, R.; Hong, R. Continuous preparation and formation mechanism of few-layer graphene by gliding arc plasma. Chem. Eng. J. 2020, 387, 124102. [Google Scholar] [CrossRef]
- Meunier, J.-L.; Mendoza-Gonzalez, N.-Y.; Pristavita, R.; Binny, D.; Berk, D. Two-dimensional geometry control of graphene nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem. Plasma Process. 2014, 34, 505–521. [Google Scholar] [CrossRef]
- Wang, C.; Song, M.; Chen, X.; Li, D.; Xia, W.; Xia, W. Effects of buffer gases on graphene flakes synthesis in thermal plasma process at atmospheric pressure. Nanomaterials 2020, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ye, K.; Yao, Y.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.; Watanabe, T. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 2019, 142, 278–284. [Google Scholar] [CrossRef]
- Xie, W.G.; Jian, C.; Chen, J.; Ming, W.W.; Deng, S.Z.; Xu, N.S. Study on effect of hydrogen treatment on amorphous carbon film using scanning probe microscopy. Ultramicroscopy 2009, 109, 451–456. [Google Scholar] [CrossRef] [PubMed]
Power (kW) | Current (A) | Voltage (V) | Gas Pressure (Torr) | Helium Flow Rate (g s−1) | Argon Flow Rate (g s−1) | Propane-Butane Flow Rate (g s−1) | Methane Flow Rate (g s−1) | Acetylene Flow Rate (g s−1) |
---|---|---|---|---|---|---|---|---|
22–36 | 350–400 | 60–90 | 150–710 | 0.75–0.9 | 3.0–3.75 | 0.11–0.30 | 0.15–0.37 | 0.05–0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shavelkina, M.; Ivanov, P.; Bocharov, A.; Amirov, R. Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch. Materials 2020, 13, 1728. https://doi.org/10.3390/ma13071728
Shavelkina M, Ivanov P, Bocharov A, Amirov R. Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch. Materials. 2020; 13(7):1728. https://doi.org/10.3390/ma13071728
Chicago/Turabian StyleShavelkina, Marina, Peter Ivanov, Aleksey Bocharov, and Ravil Amirov. 2020. "Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch" Materials 13, no. 7: 1728. https://doi.org/10.3390/ma13071728
APA StyleShavelkina, M., Ivanov, P., Bocharov, A., & Amirov, R. (2020). Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch. Materials, 13(7), 1728. https://doi.org/10.3390/ma13071728