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Abstract: In this work, nano-inspired nickel oxide nanoparticles (NiO) and polythiophene (Pth)
modified bioanode was prepared for biofuel cell applications. The chemically prepared nickel oxide
nanoparticles and its composite with polythiophene were characterized for elemental composition
and microscopic characterization while using scanning electron microscopy. The electrochemical
characterizations of polythiophene@NiO composite, biocompatible mediator ferritin (Frt) and
glucose oxidase (GOx) catalyst modified glassy carbon (GC) electrode were carried out using
cyclic voltammetry (CV), linear sweep voltammetry (LSV), and charge-discharge studies. The current
density of Pth@NiO/Frt/GOx bioanode was found to be 5.4 mA/cm2. The bioanode exhibited a good
bio-electrocatalytic activity towards the oxidation of the glucose. The experimental studies of the
bioanode are justifying its employment in biofuel cells. This will cater a platform for the generation
of sustainable energy for low temperature devices.
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1. Introduction

The advancement of technologies in the era of energy crisis are currently emphasising on the
production of clean and green energy using efficient, sustainable and renewable resources [1]. This
curiosity in research field leads to the development of enzymatic biofuel cells (EBFCs) [2]. The
enzymatic biofuel cell generates energy from the biofuels e.g., glucose, fructose, alcohols, etc. by
using the biocatalysts e.g., glucose oxidase, glucose dehydrogenase, etc. [3–5]. The advantages of
EBFCs over the conventional fuel cells are less expensive, eco-friendly, and their favorable operational
conditions, such as an ambient temperature and pressure [6–10], which make the EBFCs suitable
for the small-scale power generation devices for in-vivo applications, like in miniaturized sensors,
artificial organs, and implantable biomedical devices (e.g., cardiac pacemakers, insulin pumps) [11].
Glucose-based EBFC seems to be a promising candidate for implantable applications, due to the
availability of glucose and oxygen in physiological fluids that make the possibility for the generation
of electrical power inside the living system. The glucose used as a fuel oxidizes at the anode via redox
enzyme, whereas the reduction of oxygen takes place at the cathode, to carry out redox reaction [12].
To date, various redox enzymes have been exploited, such as glucose dehydrogenase [13], fructose
dehydrogenase [4], cellobiose dehydrogenase [14], and glucose oxidase (GOx) [3], as biocatalysts for
the anode modification. Generally, the selectivity of enzyme depends on the substrate (fuel) used. In
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view of this, GOx has been exploited in glucose-based EBFCs. Additionally, the specificity of GOx
(enzyme) towards glucose (substrate) leads to the development of a membrane-free system, which
further boosts up the potential use of EBFCs in implantable devices due to the miniaturization of
the system.

Despite all of these attributes, EBFCs are still facing some real-world challenges, such as the
low magnitude of power output and less stability over time. These problems directly link to the
poor enzyme sticking on to the electrode surface and delay in electrons transfer from the enzyme
active site to the electrode surface, which in turn produces inadequate power to run various devices.
The resistance in electrons transfer occurs because the active centre of GOx is in-depth of protein
shell [15,16]. To overcome this issue, ferritin (Frt) has been utilized as a mediator in glucose-based
EBFCs. Frt is an active redox protein that is biocompatible and eco-friendly, and one of the foremost
benefits of using ferritin is that it is working at a redox potential near GOx. Hence, the aforementioned
attributes are favorable in the application of Frt as mediator [17,18].

In recent times, the integration of nano-dimension materials and metallic nanoparticles in the design
of electrode materials has been explored for EBFCs application [19]. For this purpose, nanomaterials
have generated exceptional attention, owing to their high surface to volume ratio for enzyme loading,
inspiring electronic properties and catalytic activity [20]. For instance, conducting polymers have been
continuously explored as a new way for improving the performance of EBFCs [21]. The outstanding
electronic properties, electrochemical stability, and biocompatibility make the conducting polymers
ideal candidates for electrode catalyst support. The combinations of conducting polymers and metal
nanoparticles (MNPs) have been endlessly published because of these attributes [22,23]. The synergistic
effects of conducting polymers and metal nanoparticles improve the overall performance of the desired
results [24]. The outstanding properties of MNPs, such as high conductivity, large surface area, and
high catalytic activity, make them feasible in utilizing them as electrode materials. So far, titanium oxide
(TiO2) [25], magnetite (Fe3O4) [26], silver (Ag) [27], and gold (Au) [28] nanoparticles in combination
with conducting polymers have been successfully used. Nowadays, nickel oxide nanoparticles (NPs)
have been utilized in various research areas, for example, gas sensors [29], catalysis [30], thermoelectric,
pharmaceutical, cosmetic industries [31] solar [32], and semiconductors [33], due their attractive
physicochemical properties, such as high mechanical and thermal stabilities, radiation hardness,
and easy processing. Herein, a binary nanocomposite by exploiting the properties of NiO NPs and
polythiophene is prepared. The synthesized nanocomposite was employed as support material for the
mediator and enzyme.

2. Materials and Methods

Nickel chloride hexahydrate (NiCl2·6H2O), ethanol (C2H5OH), ferric chloride (FeCl3), ferritin
(10 mg/mL in 0.15 M sodium chloride from horse spleen), KOH, and glutaraldehyde (Glu) were
purchased from Sigma–Aldrich, (India). Phosphate buffer saline (PBS of pH 7.0 and 5.0), cetyl trimethyl
ammonium bromide (CTAB), glucose oxidase (GOx) having activity from 100,000 to 150,000 units g−1

of protein supplied by Central Drug House (CDH), (India) were used. Thiophene monomer was
obtained from Merck, India. Double distilled water (DDW) was utilized throughout the investigations.
The electrochemical studies were carried out in a three electrode system while using modified glassy
carbon electrode (GC) as working, a Pt wire as a counter, and Ag/AgCl (3 M KCl) as a reference
electrode, coupled with the potentiostat/galvanostat (PGSTAT 302 Autolab, Switzerland).

2.1. Synthesis of NiO

The NiO particles were synthesized using 20 mL of 0.1 M NiCl2·6H2O in absolute ethanol, which
were further added to a 6.73 mL of 5.0 M hydrazine monohydrate solution. The pH was maintained
from 8.0 to 12 with the help of KOH. The reaction was left at room temperature on agitation for 2 h.
The obtained product was thoroughly washed with double distilled water, followed by washing with
acetone for the elimination of residues. Deep green [Ni(OH)2·0.5H2O] particles were obtained, which
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were kept in the vacuum oven for drying. Through thermal decomposition, the Ni(OH)2·0.5H2O
particles were converted into the NiO particles at 650 ◦C [34,35].

2.2. Synthesis of Polythiophene (Pth)

The Pth matrix was synthesized by the chemical polymerization method. A 1.0 g of thiophene
monomer and 0.004 mol of CTAB were dissolved in 50 mL of double distilled water with continuous
stirring for 20 min. A 50 mL of 0.06 M FeCl3 aqueous solution utilized as oxidant was added
drop-by-drop to the mixture of thiophene and surfactant under stirring. The beginning of the
polymerization was checked by color change to dark brown after 24 h of stirring at 30 ◦C. The
dark-brown precipitate of Pth was washed with double distilled water (DDW) and methanol until
colorless filtrate was found. The Pth precipitate was dried in hot air oven for 8 h at 45 ◦C.

2.3. Preparation of Composite Dispersion

The above-prepared NiO particles and Pth powder (100 mg each) were dissolved in 2 mL double
distilled water (DDW). The mixture was sonicated in a vial for 1 h to obtain the dispersion of Pth@NiO.
The performance of dispersion was evaluated by making the use of a UV–vis spectrophotometer and
an absorption spectrum between 300–700 nm wavelengths was recorded.

2.4. Preparation of the Electrode

The glassy carbon electrode (GCE) was cleaned on a velvet pad with the help of alumina powder
(0.05 µm). After polishing, the electrode was kept in ultrasonicator bath for 30 min., followed by
the washing from distilled water, and finally left to dry at room temperature. The GC electrode was
modified by 6.0 µL dropwise coating of the composite dispersion and left to dry at room temperature
for 6 h. Further, 3 µL of Frt was drop casted on the Pth@NiO modified electrode, which was kept
for drying at room temperature. A 10 mg/mL GOx was prepared in PBS of pH 5.0 to sustain the
enzyme activity during the immobilization technique. The GOx solution (10 µL) was coated dropwise
on Pth@NiO/Frt modified GC electrode and then left to efficiently immobilize on the composite for
2 h. Lastly, a 1.0 µL of 3% glutaraldehyde aqueous solution was drop casted for the purpose of
crosslinking among the materials applied on the GC electrode and kept for drying. The GC electrode
that was modified with Pth@NiO/Frt/GOx was dipped in DDW for 60 s to remove any unbound
GOx. The electrode was kept in the refrigerator at 4 ◦C prior to use. Scheme 1 provides the schematic
representation for the preparation of bianode.
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3. Results and Discussion

3.1. SEM and EDX Analyses

The scanning electron microscopy (SEM) pictures clearly show the involvement of NiO in Pth
matrix, which was also analyzed by energy-dispersive X-ray spectroscopy (EDX). EDX analysis of
Pth and Pth@NiO displayed that NiO particles are evenly dispersed in the polymeric matrix that can
be seen in the SEM images in Figure 1a,b. Figure 1a displays the morphology of Pth matrix and, on
the other hand, Figure 1b confirms the incorporation of NiO particles in Pth matrix, which is further
assured by SEM micrograph of Figure 1c,d at higher magnification. EDX surface mapping supports the
confirmation of SEM analysis of Pth and Pth@NiO by indicating the presence of elemental composition.
Figure 1f exhibits the presence of inorganic NiO particles in polymer matrix, in addition to C and
S [36,37].
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3.2. Electrochemical Analyses

The cyclic voltammetry investigation of the Pth@NiO/Frt/GOx bioelectrode was carried out to
analyze the electrical communication of the generated electrons via mediated electron transfer from
the enzyme redox active site to the glassy carbon modified electrode. The cyclic voltammetry curves
depicted in Figure 2 displayed the glassy carbon modified electrode with Pth@NiO/Frt/GOx showing a
significant electrocatalytic redox activity. This might be due to the Frt resulting in a better dispersion
of the composite, causing an enhancement in the bioelectrocatalytic reaction of the modified glassy
carbon electrode [38]. The cyclic voltammetry studies of Pth@NiO/Frt/GOx GC modified electrode
at a scan rate of 100 mV/s in PBS of pH 7.0 provides a current of 3.2 mA/cm2, whereas repeating the
same experiment in presence of 40 mM glucose that was pre-optimized, the current has increased
to 5.4 mA/cm2. This clearly indicates that the combination of Frt and GOx provided the required
redox reaction, causing electron transfer towards the Pth@NiO modified glassy carbon electrode. The
outstanding electrical connection came into existence due to the synergistic effects of the composite
that allows for the easier shuttling of electrons from deeply buried redox active sites of GOx to the
surface of electrode [3,39]. The redox property of the composite emerged due to the incorporation of
NiO significantly enhances the catalytic activity towards glucose oxidation reaction. Nevertheless,
Ni- based material has poor electrical conductivity, hence increasing the charge transfer resistance of
the electrode. For that reason, Pth are used as a support to enhance its electrical property along with
improved surface area [40]. The composite has offered the required mechanical and electrical properties
due to the incorporation of NiO on Pth, which contributes towards exceptional electrocatalytic activity
for glucose substrate.
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Figure 2. Cylic voltammograms of Pth@NiO/Frt/GOx modified glassy carbon (GC) electrode, a: in
phosphate buffer saline (PBS) of pH 7.0, b: in 40 mM glucose dissolved in PBS of pH 7.0.

The electrochemical behavior of the glassy carbon electrode modified Pth@NiO/Frt/GOx was
analyzed for the several scan rates (20, 40, 60, 80, and 100 mV/s) in 40 mM glucose dissolved in
PBS of pH 7.0, as shown in Figure 3. As the scan rate increased, the peak current is also increased.
The cyclic voltammograms showed the linear relationship between the oxidation/reduction peaks
current and scan rate. Figure 4 showed that the oxidation/reduction peak currents are in direct relation
with the scan rate, because the increasing concentration gradient resulted in a diffusion-controlled
reaction. Thus, it can be concluded that the scan rate is one of the dominant aspects that governs
the bioelectrocatalytic effectiveness of the fabricated bioelectrode. Furthermore, cyclic voltammetry
hysteresis of the Pth@NiO/Frt/GOx biocomposite electrode was still maintained on elevated scan rate
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and it signifies the application of the composite as an efficient electrode material for biofuel cells [9,41].
This might be likely because of the integration of NiO particles in Pth matrix, offering a high surface
area and enhancement in the electrochemical activity and electrical conductivity of the prepared
Pth@NiO/Frt/GOx bioanode.
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The rate constant, Ks (2.0 s−1) for electron transfer from the GOx enzyme onto the Pth@NiO
modified bioelectrode was computed from the well-known Laviron equation, as given below [42].

logks = αlog(1− α) + (1− α)logα− log(RT/nFv) − α(1− α)(nF∆Ep/2.3RT) (1)

where α = 0.5, the constants R, T, and F express their usual meanings (R = 8.314 JK−1 mol−1, T = 298 K,
F = 96485 C mol−1), no. of electron transfer, n = 2, scan rate, v (100 mV/s), ∆Ep = Epa − Epc.

The surface concentration, I* of the adsorbed electroactive Pth-NiO/Frt/GOx modified bioanode
was estimated by using Brown–Anson model by Equation (1), as shown below [43].

Ip = n2F2I*AV/4RT (2)

where n represents the number of electrons migrated (in the present case n = 2), F meant for the Faraday
constant (96,485 C mol−1), I* is the surface concentration of the redox species to be evaluated on the
surface of Pth@NiO/Frt/GOx biocomposite electrode (mol/cm2), A symbolizes the area of glassy carbon
electrode (0.07 cm2), v is the scan rate (100 mV/s), and T and R have their universal meaning. The
surface concentration of the GOx that was confined on Pth@NiO/Frt bioanode was estimated to be
2.053 × 10−7 mol/cm2.

The current response of the Pth@NiO/Frt/GOx modified glassy carbon electrode was studied
with respect to various glucose concentrations that ranged from 10–50 mM in PBS of pH 7.0, as
shown in Figure 5A. The increase in current density was observed with the successive addition of
glucose concentration up to 40 mM, beyond that the redox current acquired saturation because the
bioelectrocatalytic redox reaction was slowed down by the higher glucose concentration. This saturated
current might be due to the saturation kinetics of the redox reaction, which is offering steady-state
equilibrium in the redox current and remains stable, even after the further increment in the glucose
concentration [3,39,44]. Figure 5B shows a typical calibration curve for the oxidation peak current
vs. the glucose concentration. This curve exhibits linear enhancement in the current density with
the increase in glucose concentration and subsequently the bioanode reached a saturation current of
5.4 ± 0.5 mA/cm2 for the biocatlytic oxidation of glucose at the 40 mM glucose concentration. These
results undoubtedly point toward the successful biocatalytic activity of the biocomposite electrode in
the presence of glucose. Therefore, the fabricated Pth@NiO/Frt/GOx bioelectrode can also be utilized
in the field of glucose biosensors.
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electrode in PBS of pH 7.0 containing different concentrations of glucose viz, a. 10 mM, b, 20 mM,
c. 30 mM, d. 40 mM, and e. 50 mM at room temperature with a potential scan rate of 100 mV/s, (B) the
calibration curve corresponding to the electrocatalytic current against variable concentration of glucose.
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Electrochemical impedance spectroscopy (EIS) was carried out to study the behavior of the
Pth@NiO and Pth@NiO/Frt/GOx at the electrode-electrolyte interface. The imaginary (−Z”) and real
(Z′) component of the EIS spectra showed the Nyquist plot for Pth@NiO and Pth@NiO/Frt/GOx
modified GC electrodes in 0.1 M KCl solution having 5.0 mM K4Fe(CN)6. In high to medium
frequency region, a semicircle is obtained, which indicates the resistance to charge transfer. Whereas
the straight line at low frequency signifies the reaction is diffusion controlled. Pth@NiO modified
electrode generated a circle with small diameter that clearly indicates low resistance to charge transfer
(Rct = 80 Ω), as shown in Figure 6. The lower value of Rct of the Pth@NiO is a sign of good electrical
conductivity and contact of the Pth@NiO with glassy carbon electrode. Further, Pth@NiO/Frt/GOx
showed Rct = 145 Ω, which is relatively bigger semi-circle and signifies for its larger value of resistance
to charge transfer, which confirms the suitable immobilization of the enzyme and mediator on the
electrode surface [45].
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modified GC electrode in 0.1 M K4Fe(CN)6.

Figure 7 displays the galvanostatic charge-discharge curves of Pth@NiO/Frt/GOx modified
GC bioelectrode at 5.4 ± 0.5 mA/cm2. All of the curves of charge-discharge are almost alike in
symmetry during the operation cycle. These curves clearly suggested significant pseudocapacitive
properties of the composite Pth@NiO. The reversibility of charge-discharge for bioelectrode confirms
the synergic involvement of the pseudocapacitance and capacitance of the hybrid material along with
its high conductivity.
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4. Conclusions

The prepared biocomposite electrode exhibited exceptional electrochemical behavior due to the
presence of Pth@NiO conductive support. It has been found that the fruitful oxidation of glucose
to gluconolactone with the generation of appreciable current density was achieved while using
Pth@NiO/Frt/GOx GC modified bioanode. The current density that was obtained with this material
was found to be 5.4 mA/cm2. The Pth@NiO/Frt/GOx bioanode exhibited the good bio-electrocatalytic
activity towards the oxidation of the glucose substrate supported by Frt mediator, which played an
essential role for increasing the electron transfer rate. The bioelectrode also showed the long- lasting
stability due to the incorporation of Pth@NiO that imparts the suitable environment for the proper
functioning of enzyme. Thus, the Pth@NiO/Frt/GOx bioelectrode showed a promising approach for
being a better option to employ in implantable biomedical devices.
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