Triaxial Testing of Geosynthetics Reinforced Tailings with Different Reinforced Layers
Abstract
:1. Introduction
2. Triaxial Test
2.1. Test Material
2.2. Specimen Preparation
2.3. Test Scheme and Procedure
3. Test Results and Analysis
3.1. Stress–Strain Curve of Reinforced Tailings
3.1.1. Different Reinforced Layers of Geogrids
3.1.2. Different Reinforced Layers of Geotextiles
3.2. Model Parameters of Stress–Strain Curve Fitting for Reinforced Tailings
3.3. Effect of Reinforced Layers on Shear Strength of Tailings
3.4. Effect Analysis of Reinforced Tailings
4. Conclusions
- The stress–strain curves of geogrids show hardening characteristics, whereas those of geotextiles show softening properties. The hardening or softening characteristics become more apparent with increasing reinforced layers. The stress–strain curves of geogrid- and geotextile-reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model.
- In both geogrid- and geotextile-reinforced tailings, the pseudo-cohesion of shear strength index is strongly affected by increasing reinforced layers, in which it increases linearly as the reinforced layers increase, whereas the pseudo-friction angle is affected to a lesser extent. Compared with geotextiles, the reinforcement effect of geogrids on tailings is more significant.
- The effect of reinforcement tailing increases with the increase of reinforcement layers, but when the number of reinforced layers increases to a certain extent, the reinforcement effect begins to weaken gradually. Reinforcement at low confining pressure can significantly improve the strength of tailings, which has a certain reference significance for the actual reinforcement of tailings engineering.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ardah, A.; Abu-Farsakh, M.; Voyiadjis, G. Numerical evaluation of the performance of a geosynthetic reinforced soil-integrated bridge system (grs-ibs) under different loading conditions. Geotext. Geomembr. 2017, 45, 558–569. [Google Scholar] [CrossRef]
- Bao, C.G. Study on interface behavior of geosynthetics and soil. Chin. J. Rock Mech. Eng. 2006, 25, 1735–1744. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Wang, L.G.; Feng, M.S. Stability study of the geogrids reinforced tailings. Adv. Mater. Res. 2011, 327, 1–5. [Google Scholar] [CrossRef]
- Shen, L.Y.; Zhou, K.P.; Wei, Z.A.; Chen, Y.L. Research on geosynthetics in tailings dam reinforcement. Adv. Mater. Res. 2011, 402, 675–679. [Google Scholar] [CrossRef]
- Bathurst, R.J.; Ezzein, F.M. Geogrid pullout load-strain behaviour and modelling using a transparent granular soil. Geosynth. Int. 2016, 23, 271–286. [Google Scholar] [CrossRef]
- Lei, S.Y. Study on reinforced loess by triaxial tests. J. Xi’Highw. Univ. 2000, 20, 30–35. (In Chinese) [Google Scholar] [CrossRef]
- Ingold, T.S. Reinforced clay subjected to undrained triaxial loading. J. Geotech. Eng. Div. 1983, 109, 738–743. [Google Scholar] [CrossRef]
- Haeri, S.M.; Nourzad, R.; Oskrouch, A.M. Effect of geotextile reinforcement on the mechanical behavior of sands. Geotext. Geomembr. 2000, 18, 385–402. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.; Souci, G.; Voyiadjis, G.Z.; Chen, Q. Evaluation of factors affecting the performance of geogrid-reinforced granular base material using repeated load triaxial tests. J. Mater. Civ. Eng. 2012, 24, 72–83. [Google Scholar] [CrossRef]
- Koerner, R.M. Emerging and future developments of selected geosynthetic applications. J. Geotech. Geoenviron. Eng. 2000, 126, 293–306. [Google Scholar] [CrossRef]
- Khedkar, M.S.; Mandal, J.N. Behaviour of cellular reinforced sand under triaxial loading conditions. Geotech. Geol. Eng. 2009, 27, 645–658. [Google Scholar] [CrossRef]
- Khaniki, A.K.; Daliri, F. Analytical and experimental approaches to obtain the ultimate strength of reinforced earth elements. KSCE J. Civ. Eng. 2013, 17, 1001–1007. [Google Scholar] [CrossRef]
- Nair, A.M.; Latha, G.M. Large diameter triaxial Tests on geosynthetic-reinforced granular subbases. J. Mater. Civ. Eng. 2014, 27, 0401–4148. [Google Scholar] [CrossRef]
- Nouri, S.; Nechnech, A.; Lamri, B.; Lurdes, L.M. Triaxial test of drained sand reinforced with plastic layers. Arab. J. Geosci. 2016, 9, 53. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, L.L.; Chen, Y.J.; Shi, C.H. Mesoscopic analysis of reinforced sand triaxial test using PFC3D. Shuili Xuebao 2017, 48, 426–434, 445. (In Chinese) [Google Scholar] [CrossRef]
- Abu-Farsakh, M.Y.; Izzaldin, A.; Khalid, F. Comparison of field and laboratory pullout tests on geosynthetics in marginal soils. Transp. Res. Rec. J. Transp. Res. Board 2006, 1975, 124–136. [Google Scholar] [CrossRef]
- Yi, F.; Du, C.B.; Wang, Z.Y.; Yu, B. Effects of mesh size on interface characteristics between geogrid and tailings. J. China Coal Soc. 2019. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Richwien, W. A study of soil-reinforcement interface-friction. J. Geotech. Geoenviron. Eng. 2002, 128, 92–94. [Google Scholar] [CrossRef]
- Wang, F.J. Study on reinforced tailing sand by triaxial compression test. J. Liaoning Tech. Univ. 2003, 22, 618–620. [Google Scholar]
- Zheng, B.; Zhang, D.; Liu, W.; Yang, Y.; Yang, H. Use of Basalt Fiber-Reinforced Tailings for Improving the Stability of Tailings Dam. Materials 2019, 12, 1306. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.X.; Feng, M.S.; Wang, F.J.; Wang, L.G. Triaxial compression test on multilayer reinforced tailing sand. Rock Soil Mech. 2010, 31, 3784–3788. (In Chinese) [Google Scholar] [CrossRef]
- Feng, M.S.; Wang, L.G.; Wang, F.J. Triaxial compression test on multilayer reinforced tailing fine sand. J. Shanxi Univ. (Nat. Sci. Ed.) 2011, 34, 144–147. (In Chinese) [Google Scholar] [CrossRef]
- JTJ051-93. Test Methods of Soils for Highway Engineering; The People’ Transportation Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Duncan, J.M.; Chang, C.Y. Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. ASCE 1970, 96, 1629–1653. [Google Scholar]
- Janbu, N. Soil compressibility as determined by oedometer test and triaxial tests. In Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, 15–18 October 1963; pp. 19–25. [Google Scholar]
- Liu, Z.D.; Dang, F.N. Theoretical Foundation of Soilelastoplasticity; World Book Publishing Company: Xi’an, China, 2002. (In Chinese) [Google Scholar]
- Zhang, B.; Shi, M.L. Research on direct shear test and pullout test between clay and geotextile. Rock Soil Mech. 2005, 26, 61–64. (In Chinese) [Google Scholar]
EGA30 Geogrid | Technical Index | Mechanical Parameters of Needle-Punched Staple Geotextiles | Technical Index | |
---|---|---|---|---|
Mesh size (length × width)/mm | 12.7 × 12.7 | Fracture strength of longitudinal and transverse/(kN·m−1) | 30 | |
Fracture strength/(kN·m−1) | Radial | 30 | Elongation corresponding to standard strength/% | 40–80 |
Zonal | 30 | CBR breaking strength ≥/kN | 13 | |
Elongation at break ≥/% | Radial | 4 | Tearing strength of longitudinal and transverse ≥/kN | 12 |
Zonal | 4 | Equivalent aperture/mm | 0.05–0.2 | |
Temperature resistance ≥/°C | −100 to 280 | Vertical permeability coefficient/cm·s−1 | 1.0 × 10−3 | |
Thickness/mm | 2 | Thickness/mm | 2.2 |
Test Scheme | Test Materials | Reinforced Layers | Confining Pressure/kPa | Remarks |
---|---|---|---|---|
1 | No reinforcement | 0 | 100, 200, 300, 400 | Study on strength characteristics of geogrid-reinforced tailings with different reinforced layers |
2 | Geogrid | 1 | ||
3 | 2 | |||
4 | 4 | |||
5 | Geotextile | 1 | Study on strength characteristics of geotextile-reinforced tailings under different reinforced layers | |
6 | 2 | |||
7 | 4 |
Reinforced Layers | Confining Pressure (kPa) | a (×10−5) | b (×10−4) | Ei (kPa) | (σ1 − σ3)ult (kPa) | K | n | Rf Mean Value | |
---|---|---|---|---|---|---|---|---|---|
No reinforcement | 100 | 5.49 | 25.50 | 18,214.94 | 392.16 | 184.08 | 0.41 | 0.80 | |
200 | 3.96 | 14.10 | 25,252.53 | 709.22 | |||||
300 | 3.54 | 8.16 | 28,248.59 | 1225.49 | |||||
400 | 3.06 | 6.21 | 32,679.74 | 1610.31 | |||||
Geogrid | 1 | 100 | 5.03 | 13.50 | 19,880.72 | 740.74 | 187.67 | 0.66 | 0.74 |
200 | 3.68 | 7.82 | 27,173.91 | 1278.77 | |||||
300 | 2.80 | 5.13 | 35,714.29 | 1949.32 | |||||
400 | 1.94 | 4.53 | 51,546.39 | 2207.51 | |||||
2 | 100 | 4.73 | 8.74 | 21,141.65 | 1144.16 | 206.59 | 0.74 | 0.72 | |
200 | 3.00 | 5.76 | 33,333.33 | 1736.11 | |||||
300 | 2.22 | 4.36 | 45,045.05 | 2293.58 | |||||
400 | 1.67 | 3.87 | 59,880.24 | 2583.98 | |||||
4 | 100 | 3.83 | 5.93 | 26,109.66 | 1686.34 | 255.68 | 0.86 | 0.70 | |
200 | 2.27 | 4.33 | 44,052.86 | 2309.47 | |||||
300 | 1.49 | 4.03 | 67,114.09 | 2481.39 | |||||
400 | 1.18 | 2.91 | 84,745.76 | 3436.43 | |||||
Geotextiles | 1 | 100 | 4.57 | 13.9 | 21,881.84 | 719.42 | 211.59 | 0.42 | 0.73 |
200 | 3.65 | 8.07 | 27,397.26 | 1239.16 | |||||
300 | 3.23 | 5.61 | 30,959.75 | 1782.53 | |||||
400 | 2.43 | 4.25 | 41,152.26 | 2352.94 | |||||
2 | 100 | 4.35 | 8.74 | 22,988.51 | 1144.16 | 220.29 | 0.45 | 0.69 | |
200 | 3.54 | 6.55 | 28,248.59 | 1526.72 | |||||
300 | 2.92 | 4.39 | 34,246.58 | 2277.90 | |||||
400 | 2.26 | 3.34 | 44,247.79 | 2994.01 | |||||
4 | 100 | 3.74 | 5.66 | 26,737.97 | 1766.78 | 267.30 | 0.47 | 0.67 | |
200 | 2.70 | 4.16 | 37,037.04 | 2403.85 | |||||
300 | 2.25 | 3.56 | 44,444.44 | 2808.99 | |||||
400 | 1.95 | 2.60 | 51,282.05 | 3846.15 |
Reinforcement | Reinforced Layers | Fitting Formula of Shear Strength | R2/% | cR/kPa | φR/° |
---|---|---|---|---|---|
No reinforcement | 0 | 99.6 | 4.91 | 36.82 | |
Geogrids | 1 | 99.2 | 60.97 | 39.98 | |
2 | 99.2 | 122.97 | 40.83 | ||
4 | 97.2 | 194.13 | 41.10 | ||
Geotextiles | 1 | 99.9 | 46.12 | 39.78 | |
2 | 98.8 | 86.66 | 41.16 | ||
4 | 98.3 | 182.78 | 41.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, F.; Du, C. Triaxial Testing of Geosynthetics Reinforced Tailings with Different Reinforced Layers. Materials 2020, 13, 1943. https://doi.org/10.3390/ma13081943
Yi F, Du C. Triaxial Testing of Geosynthetics Reinforced Tailings with Different Reinforced Layers. Materials. 2020; 13(8):1943. https://doi.org/10.3390/ma13081943
Chicago/Turabian StyleYi, Fu, and Changbo Du. 2020. "Triaxial Testing of Geosynthetics Reinforced Tailings with Different Reinforced Layers" Materials 13, no. 8: 1943. https://doi.org/10.3390/ma13081943
APA StyleYi, F., & Du, C. (2020). Triaxial Testing of Geosynthetics Reinforced Tailings with Different Reinforced Layers. Materials, 13(8), 1943. https://doi.org/10.3390/ma13081943