Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pyrolysis and Activation Process of Biochar
2.2.1. Pyrolysis Process of Biomass
2.2.2. Chemical Activation of the Biochar
2.2.3. Physical Activation of the Biochar
2.3. Characterisation of the Materials
2.4. Adsorption Studies
3. Results and Discussion
3.1. Characterisation of Carbon Materials
3.2. Adsorption Analysis with Rhodamine B
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Sharma, A.; Pareek, V.; Zhang, D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. [Google Scholar] [CrossRef]
- Pawel, K.; Dariusz, K. Utjecaj temperature na sastav proizvoda pirolize drva. Drv. Ind. 2017, 68, 307–313. [Google Scholar]
- Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical biomass gasification: A review of the current status of the technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, D.; Rodero, A.; Zukowski, M.; Teleszewski, T.; Bullejos Marín, D.; Jasiūnas, K.; Milius, P.; Urbonienė, V.; Arrebola, J. Buildings 2020+ Energy sources; Krawczyk, D., Ed.; Printing House of Bialystok University of Technology: Bialystok, Poland, 2019; ISBN 9788365596727. [Google Scholar]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Ellem, G.K.; Mulligan, C.J. Biomass char as a fuel for internal combustion engines. Asia-Pac. J. Chem. Eng. 2012, 7, 769–776. [Google Scholar] [CrossRef]
- Amaya, A.; Medero, N.; Tancredi, N.; Silva, H.; Deiana, C. Activated carbon briquettes from biomass materials. Bioresour. Technol. 2007, 98, 1635–1641. [Google Scholar] [CrossRef]
- Grima-Olmedo, C.; Ramírez-Gómez, Á.; Gómez-Limón, D.; Clemente-Jul, C. Activated carbon from flash pyrolysis of eucalyptus residue. Heliyon 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Daud, W.M.A.W.; Ali, W.S.W. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 2004, 93, 63–69. [Google Scholar] [CrossRef]
- Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.-A.; Sirinuntawittaya, N.; Dutta, A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour. Technol. 2008, 99, 4887–4895. [Google Scholar] [CrossRef] [PubMed]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elyounssi, K.; Volle, G.; El Hamidi, A.; Blin, J. Yield and quality of charcoals from olive mill residues and its stone and pulp fractions: An enhanced comparative study. Int. J. Green Energy 2018, 15, 489–495. [Google Scholar] [CrossRef]
- Yang, Z.H.; Xiong, S.; Wang, B.; Li, Q.; Yang, W.C. Cr(III) adsorption by sugarcane pulp residue and biochar. J. Cent. South. Univ. 2013, 20, 1319–1325. [Google Scholar] [CrossRef]
- Pehlivan, E.; Özbay, N.; Yargıç, A.S.; Şahin, R.Z. Production and characterization of chars from cherry pulp via pyrolysis. J. Environ. Manage. 2017, 203, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Jarick, S. An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 2015, 81, 177–182. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- McMillan, J.D.; Adney, W.S.; Mielenz, J.R.; Klasson, K.T. Applied Biochemistry and Biotechnology; Humana Press: Totowa, NJ, USA, 2006. [Google Scholar]
- Figueiredo, L.; Pereira, M.; Freitas, M.; Orfaó, J. Modification of the surface chemistry of activated carbons. Carbon N.Y. 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Shen, W.; Li, Z.; Liu, Y. Surface Chemical Functional Groups Modification of Porous Carbon. Recent Patents Chem. Eng. 2010, 1, 27–40. [Google Scholar] [CrossRef]
- Contescu, C.; Adhikari, S.; Gallego, N.; Evans, N.; Biss, B. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C J. Carbon Res. 2018, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Borhan, A.; Taha, M.F.; Hamzah, A.A. Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Adv. Mater. Res. 2014, 832, 132–137. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Rashidi, H.; Jaber, M.; Mahboub, D. Comparing the Performance of KOH with NaOH-Activated Anthracites in terms of Methane Storage. Adsorpt. Sci. Technol. 2013, 31, 729–745. [Google Scholar] [CrossRef] [Green Version]
- Ahmadpour, A.; Do, D.D. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N.Y. 1997, 35, 1723–1732. [Google Scholar] [CrossRef]
- Maneerung, T.; Liew, J.; Dai, Y.; Kawi, S.; Chong, C.; Wang, C.H. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresour. Technol. 2016, 200, 350–359. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.C.; Ryu, C.; Jeon, J.K.; Shin, M.C.; Park, Y.K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Castello, D.; Fiori, L. Granular activated carbon from grape seeds hydrothermal char. Appl. Sci. 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Ledesma, B.; Álvarez-Murillo, A.; Al-Kassir, A.; Yusaf, T. Dependence of the microporosity of activated carbons on the lignocellulosic composition of the precursors. Energies 2017, 10, 542. [Google Scholar] [CrossRef]
- Karcz, H.; Kantorek, M.; Grabowicz, M.; Wierzbicki, K. The feasibility of straw as a fuel source for power generating boilers. Inżynieria środowiska 2013, XI–XII, 8–15. [Google Scholar]
- Hema, M.; Arivoli, S. Rhodamine B adsorption by activated carbon: Kinetic and equilibrium studies. Indian J. Chem. Technol. 2009, 16, 38–45. [Google Scholar]
- Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- Enaime, G.; Ennaciri, K.; Ounas, A.; Baçaoui, A.; Seffen, M.; Selmi, T.; Yaacoubi, A. Preparation and characterization of activated carbons from olive wastes by physical and chemical activation: Application to Indigo carmine adsorption. J. Mater. Environ. Sci. 2017, 8, 4125–4137. [Google Scholar]
- Pallares, J.; Gonzalez- Cencerrado, A.; Inmaculada, A. Production and characterization of activated carbon from barley straw by physical activaton with carbon dioxide and steam. J. Chem. Inf. Model. 2019, 53, 1689–1699. [Google Scholar]
- Boguta, P.; Sokołowska, Z.; Skic, K.; Tomczyk, A. Chemically engineered biochar – Effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel 2019, 256, 115893. [Google Scholar] [CrossRef]
- Arivoli, S.; Thenkuzhali, M.; Prasath, M.D. Adsorption of rhodamine B by acid activated carbon-kinetic, thermodynamic and equilibrium studies. Orbital 2009, 1, 138–155. [Google Scholar]
Proximate Analysis (wt.%) | Elemental Analysis (wt.%) | Calorific Value (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Fixed Carbon | Moisture | Ash | Volatile | C | H | N | O | |
Straw pellet | 1.8 | 6.7 | 5.9 | 85.6 | 49.0 | 6.9 | 1.7 | 36.6 | 21.3 |
Char-straw Pellet | – | – | – | – | 76.2 | 0.7 | 3.4 | – | |
Wood | 21.4 | 8.4 | 2.3 | 67.9 | 45.0 | 6.4 | 1.3 | 47.3 | 19.6 |
Char-wood | – | – | – | – | 74.0 | 0.6 | 3.5 | – |
No. | Activation Agent | Activation Agent to Carbon Molar Ratio | Straw Pellet | Wood Strips | ||
---|---|---|---|---|---|---|
SBET (m2/g) | Vp (cm3/g) | SBET (m2/g) | Vp (cm3/g) | |||
1 | without activation (reference sample) | 3.1 | 0.002 | 27.3 | 0.013 | |
2 | steam | 1:0.5 | 226.9 | 0.12 | 229.5 | 0.12 |
3 | steam | 1:1 | 452.5 | 0.23 | 248.5 | 0.13 |
4 | CO2 | 1:0.5 | 401.2 | 0.21 | 228.8 | 0.12 |
5 | CO2 | 1:1 | 682.1 | 0.35 | 385.0 | 0.20 |
6 | KOH | 1:2 * | 1349.6 | 0.69 | 1194.4 | 0.61 |
Before Adsorption | After Adsorption | ||||
---|---|---|---|---|---|
No. | Activated Carbon (mg) | Rhodamine B (mg) | Activated Carbon/Rhodamine B (q) (mg/mg) | Rhodamine B (mg/dm3) | % Dye Removal |
1 | 0 | 0.6 | – | 30 | 0 |
2 | 2.7 | 0.6 | 4.5 | 30 | 0 |
3 | 4.1 | 0.6 | 6.8 | 10 | 66 |
4 | 11.2 | 0.6 | 18.7 | 3 | 91 |
5 | 15.3 | 0.6 | 25.5 | n.d. | 100 |
6 | 20.6 | 0.6 | 34.3 | n.d. | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption. Materials 2020, 13, 2047. https://doi.org/10.3390/ma13092047
Januszewicz K, Kazimierski P, Klein M, Kardaś D, Łuczak J. Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption. Materials. 2020; 13(9):2047. https://doi.org/10.3390/ma13092047
Chicago/Turabian StyleJanuszewicz, Katarzyna, Paweł Kazimierski, Maciej Klein, Dariusz Kardaś, and Justyna Łuczak. 2020. "Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption" Materials 13, no. 9: 2047. https://doi.org/10.3390/ma13092047
APA StyleJanuszewicz, K., Kazimierski, P., Klein, M., Kardaś, D., & Łuczak, J. (2020). Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption. Materials, 13(9), 2047. https://doi.org/10.3390/ma13092047