Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders
Abstract
:1. Introduction
2. Experimental Details
Specimen Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Soni, P.R. Mechanical Alloying: Fundamentals and Applications; Cambridge International Science Publishing: Cambridge, UK, 2001. [Google Scholar]
- Dercz, G.; Matuła, I.; Zubko, M.; Dercz, J. Phase composition and microstructure of new Ti-Ta-Nb-Zr biomedical alloys prepared by mechanical alloying method. Powder Diffr. 2017, 32, S186–S192. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V. The science and technology of mechanical alloying. Mater. Sci. Eng. A 2001, 304, 151–158. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Mechanical Alloying for Fabrication of Advanced Engineering Materials; William Andrew Publishing: New York, NY, USA, 2001. [Google Scholar]
- Giordana, M.F.; Esquivel, M.R.; Zelaya, E. A detailed study of phase evolution in Cu-16 at. %Al and Cu-30 at. %Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 2015, 26, 470–477. [Google Scholar] [CrossRef]
- Zadra, M.K.; Srl Viale Dante, S. Mechanical alloying of titanium. Mater. Sci. Eng. A 2013, 583, 105–113. [Google Scholar] [CrossRef]
- Chawla, V.; Prakash, S.; Sidhu, B.S. State of the Art: Applications of Mechanically Alloyed Nanomaterials—A Review. Mater. Manuf. Process. 2007, 22, 469–473. [Google Scholar] [CrossRef]
- Çınar, S.; Tevis, I.D.; Chen, J.; Thuo, M. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering. Sci. Rep. 2016, 6, 21864. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Gourajoubi, F.; Pourabdoli, M.; Uner, D.; Raygan, S. Effect of process control agents on synthesizing nano-structured 2Mg-9N-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2. Adv. Powder Technol. 2015, 26, 448–453. [Google Scholar] [CrossRef]
- Dercz, G.; Matuła, I.; Zubko, M.; Liberska, A. Structure characterization of biomedical Ti-Mo-Sn alloy prepared by mechanical alloying method. Acta Phys. Pol. A 2016, 130, 1029–1032. [Google Scholar] [CrossRef]
- Matuła, I.; Dercz, G.; Zubko, M.; Prusik, K.; Pajak, L. Influence of high energy milling time on the Ti-50Ta biomedical alloy structure. Acta Phys. Pol. A 2016, 130, 1033–1036. [Google Scholar] [CrossRef]
- Nouri, A.; Hodgson, P.D.; Wen, C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy. Mater. Sci. Eng. C 2011, 31, 921–928. [Google Scholar] [CrossRef]
- Nazari, K.A.; Nouri, A.; Hilditch, T. Effects of milling time on powder packing characteristics and compressive mechanical properties of sintered Ti-10Nb-3Mo alloy. Mater. Lett. 2015, 140, 55–58. [Google Scholar] [CrossRef]
- Aguilar, C.; Guzman, P.; Lascano, S.; Parra, C.; Bejar, L.; Medina, A.; Guzman, D. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying. J. Alloys Compd. 2016, 670, 346–355. [Google Scholar] [CrossRef]
- Dercz, G.; Prusik, K.; Pajak, L.; Goryczka, T.; Formanek, B. X-ray studies on NiAl-Cr3C2-Al2O3 composite powder with nanocrystalline NiAl phase. J. Alloys Compd. 2006, 423, 112–115. [Google Scholar] [CrossRef]
- Dercz, G.; Formanek, B.; Prusik, K.; Pająk, L. Microstructure of Ni(Cr)-TiC-Cr3C2-Cr7C3 composite powder. J. Mater. Process. Technol. 2005, 162–163, 15–19. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.C.; Wu, S.C.; Hsu, S.K.; Chang, T.Y.; Ho, W.F. Effect of ball milling on properties of porous Ti-7.5Mo alloy for biomedical applications. J. Alloys Compd. 2014, 582, 793–801. [Google Scholar] [CrossRef]
- Canakci, A.; Varol, T.; Ozsahin, S. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: Measurement and modeling. Measurement 2013, 46, 1818–1827. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Lu, L.; Yap, S.M. Prediction of the amount of PCA for mechanical milling. J. Mater. Process. Technol. 1999, 89–90, 260–265. [Google Scholar] [CrossRef]
- Kurama, H.; Erkuş, Ş.; Gaşan, H. The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill. Ceram. Int. 2017, 43, S391–S396. [Google Scholar] [CrossRef]
- Juárez, R.; Suñol, J.J.; Berlanga, R.; Bonastre, J.; Escoda, L. The effects of process control agents on mechanical alloying behavior of a Fe–Zr based alloy. J. Alloys Compd. 2007, 434–435, 472–476. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.F. Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. J. Alloys Compd. 1999, 290, 279–283. [Google Scholar] [CrossRef]
- Palacios-Lazcano, A.; Cabañ As-Moreno, J.G.; Cruz-Gandarilla, F. On the formation of a mixed carbide (MgNi3Cx) during production of nanocrystalline Mg2Ni by mechanical alloying. Scr. Mater. 2005, 52, 571–575. [Google Scholar] [CrossRef]
- Niu, X.P.; Froyen, L.; Delaey, L.; Peytour, C. Hydride formation in mechanically alloyed AlZr and AlFeZr. Scr. Metall. Mater. 1994, 30, 13–18. [Google Scholar] [CrossRef]
- Lu, L.; Lai, M.O.; Zhang, S. Preparation of Al-Based Composite Using Mechanical Alloying. Key Eng. Mater. 1995, 104–107, 111–124. [Google Scholar] [CrossRef]
- Fray, D.J. Novel methods for the production of titanium. Int. Mater. Rev. 2008, 53, 317–325. [Google Scholar] [CrossRef]
- Nestler, D.; Siebeck, S.; Podlesak, H.; Wagner, S.; Hockauf, M.; Wielage, B. Powder Metallurgy of Particle-Reinforced Aluminium Matrix Composites (AMC) by Means of High-Energy Ball Milling. In Integrated Systems, Design and Technology 2010; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; pp. 93–107. ISBN 978-3-642-17384-4. [Google Scholar]
- Zhang, Y.S.; Wang, X.; Zhang, W.; Huo, W.T.; Hu, J.J.; Zhang, L.C. Elevated tensile properties of Ti-O alloy with a novel core-shell structure. Mater. Sci. Eng. A 2017, 696, 360–365. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Zhang, W.; Huo, W.T.; Hu, J.J.; Zhang, L.C. Microstructure, mechanical and wear properties of coreeshell structural particle reinforced Ti-O alloys. Vacuum 2017, 139, 44–50. [Google Scholar] [CrossRef]
- Adamek, G. Mechanical Alloying of Ti-20Ta-20Nb-(10÷20)Mg Alloys. Acta Phys. Pol. A 2014, 126, 871–874. [Google Scholar] [CrossRef]
- Khorev, A.I. Alloying titanium alloys with rare-earth metals. Russ. Eng. Res. 2011, 31, 1087–1094. [Google Scholar] [CrossRef]
- Kawahara, H. Cytotoxicity of Implantable Metals and Alloys. Bull. Japan Inst. Met. 1992, 31, 1033–1039. [Google Scholar] [CrossRef] [Green Version]
- Biesiekierski, A.; Wang, J.; Abdel-Hady Gepreel, M.; Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Hsu, H.C.; Wu, S.C.; Hong, Y.S.; Ho, W.F. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys. J. Alloys Compd. 2009, 479, 390–394. [Google Scholar] [CrossRef]
- Kim, H.Y.; Fukushima, T.; Buenconsejo, P.J.S.; Nam, T.H.; Miyazaki, S. Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater. Sci. Eng. A 2011, 528, 7238–7246. [Google Scholar] [CrossRef]
- Liu, H.W.; Paul Bishop, D.; Plucknett, K.P. A comparison of Ti-Ni and Ti-Sn binary alloys processed using powder metallurgy. Mater. Sci. Eng. A 2015, 644, 392–404. [Google Scholar] [CrossRef]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Massalski, B.; Thaddeus, L. Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Okamoto, H., Subramanian, P.R., Massalski, B., Thaddeus, L., Eds.; ASM International: Almere, The Netherlands, 1990. [Google Scholar]
- Nouri, A.; Hodgson, P.D.; Wen, C.E. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010, 6, 1630–1639. [Google Scholar] [CrossRef]
- Nouri, A.; Chen, X.; Li, Y.; Yamada, Y.; Hodgson, P.D.; Wen, C. Synthesis of Ti-Sn-Nb alloy by powder metallurgy. Mater. Sci. Eng. A 2008, 485, 562–570. [Google Scholar] [CrossRef]
- Omran, A.M.; Woo, K.D.; Kim, D.K.; Kim, S.W.; Moon, M.S.; Barakat, N.A.; Zhang, D.L. Effect of Nb and Sn on the Transformation of α-Ti to β-Ti in Ti-35 Nb-2.5 Sn Nanostructure Alloys using Mechanical Alloying. Met. Mater. Int. 2008, 14, 321–325. [Google Scholar] [CrossRef]
- Brown, S.A.; Lemons, J.E. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. Med. Appl. Titan. Its Alloy. Mater. Biol. Issues 1996, 12. [Google Scholar]
- Tong, Y.X.; Guo, B.; Zheng, Y.F.; Chung, C.Y.; Ma, L.W. Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. J. Mater. Eng. Perform. 2011, 20, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, E.; Sakurai, T.; Watanabe, S.; Masahashi, N.; Hanada, S. Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys. Mater. Trans. 2002, 43, 2978–2983. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Yang, R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater. Sci. Eng. A 2006, 441, 112–118. [Google Scholar] [CrossRef]
- Hussein, A.H.; Gepreel, M.A.H.; Gouda, M.K.; Hefnawy, A.M.; Kandil, S.H. Biocompatibility of new Ti-Nb-Ta base alloys. Mater. Sci. Eng. C 2016, 61, 574–578. [Google Scholar] [CrossRef]
- Delvat, E.; Gordin, D.M.; Gloriant, T.; Duval, J.L.; Nagel, M.D. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys. J. Mech. Behav. Biomed. Mater. 2008, 1, 345–351. [Google Scholar] [CrossRef]
- Toraya, H. Whole-powder-pattern fitting without reference to a structural model: Application to X-ray powder diffraction data. J. Appl. Crystallogr. 1996, 19, 440–447. [Google Scholar] [CrossRef]
- Wiles, D.B.; Young, R.A. A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst. 1981, 14, 149–151. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structure. J. Appl. Cryst. 1969, 3, 65–69. [Google Scholar] [CrossRef]
- Young, R.A. The Rietveld method; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Hill, R.J.; Howard, C.J. IUCr Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 1987, 20, 467–474. [Google Scholar] [CrossRef]
- Dercz, G.; Oleszak, D.; Prusik, K.; Pająk, L. Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases. Rev. Adv. Mater. Sci. 2008, 18, 764–768. [Google Scholar]
- Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamamoto, A.; Mukai, T.; Shirai, Y.; Kano, M.; Kudo, T.; Kanetaka, H.; Kikuchi, M. Medical application of magnesium and its alloys as degradable biomaterials. Interface Oral Heal. Sci. 2009, 318–320. [Google Scholar]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Persaud-Sharma, D.; McGoron, A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Dercz, G.; Matuła, I.; Zubko, M.; Kazek-Kęsik, A.; Maszybrocka, J.; Simka, W.; Dercz, J.; Świec, P.; Jendrzejewska, I. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater. Charact. 2018, 142, 124–136. [Google Scholar] [CrossRef]
- Salvo, C.; Aguilar, C.; Cardoso-Gil, R.; Medina, A.; Bejar, L.; Mangalaraja, R.V. Study on the microstructural evolution of Ti-Nb based alloy obtained by high-energy ball milling. J. Alloys Compd. 2017, 720, 254–263. [Google Scholar] [CrossRef]
- Dercz, G.; Matuła, I.; Maszybrocka, J. Properties of porous Ti-26Nb-6Mo-1.5Sn alloy produced via powder metallurgy for biomedical application. Phys MET Metallogr. 2019, 120, 1384–1391. [Google Scholar] [CrossRef]
- Dercz, G.; Pająk, L.; Formanek, B. Dispersion analysis of NiAl-TiC-Al2O3 composite powder ground in a high-energy attritorial mill. J. Mater. Process. Technol. 2006, 175, 334–337. [Google Scholar] [CrossRef]
- Yu, H.; Sun, Y.; Hu, L.; Zhou, H.; Wan, Z. Microstructural evolution of AZ61-10 at.%Ti composite powders during mechanical milling. Mater. Design 2016, 104, 265–275. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 2007, 58, 883–891. [Google Scholar] [CrossRef]
- Huang, J.; Xing, H.; Sun, J. Structural stability and generalized stacking fault energies in β Ti-Nb alloys: Relation to dislocation properties. Scr. Mater. 2012, 66, 682–685. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Wang, C. Point defects and mechanical behavior of titanium alloys and intermetallic compounds. J. Phys. Conf. Ser. 2006, 29, 220–227. [Google Scholar]
Parameters | Values |
---|---|
Rotation speed [rpm] | 250 |
Milling bowl volume, [cm3] | 80 |
Milling balls | Steel (AISI 52100) |
Ball to powder weight ratio | 10:1 |
Rotation speed [rpm] | 200 |
Ball size, [mm] | 10 |
Milling time, [h] | 10; 15; 20; 40; 60; 80; 100 |
Element | Fe | Cr | C | Mn | Si | S | P |
Content (%) | 96.5–97.32 | 1.30–1.60 | 0.980–1.10 | 0.250–0.450 | 0.150–0.300 | ≤0.0250 | ≤0.0250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuła, I.; Zubko, M.; Dercz, G. Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders. Materials 2020, 13, 2110. https://doi.org/10.3390/ma13092110
Matuła I, Zubko M, Dercz G. Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders. Materials. 2020; 13(9):2110. https://doi.org/10.3390/ma13092110
Chicago/Turabian StyleMatuła, Izabela, Maciej Zubko, and Grzegorz Dercz. 2020. "Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders" Materials 13, no. 9: 2110. https://doi.org/10.3390/ma13092110
APA StyleMatuła, I., Zubko, M., & Dercz, G. (2020). Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders. Materials, 13(9), 2110. https://doi.org/10.3390/ma13092110