Investigation of the Influence of PLA Molecular and Supramolecular Structure on the Kinetics of Thermal-Supported Hydrolytic Degradation of Wet Spinning Fibres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology of Thermal-Supported Hydrolytic Degradation
2.3. SEM Method
2.4. Mass Loss
2.5. Intrinsic Viscosity
3. Results and Discussion
3.1. Photographic Documentation and SEM Results
3.2. Mass Loss Kinetics
3.3. Degradation Kinetics of PLA Fibres on Molecular Level
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groot, W.; van Krieken, J.; Sliekersl, O.; de Vos, S. Production and Purification of Lactic Acid and Lactide in Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010; pp. 3–19. ISBN 978-0-470-29366-9. [Google Scholar]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P. Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J. Polym. Environ. 2006, 14, 317–334. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Qi, R.; Hu, X.; Pingkai, J. Polylactide foams prepared by a traditional chemical compression-molding method. J. Appl. Polym. Sci. 2013, 130, 330–337. [Google Scholar] [CrossRef]
- Standau, T.; Chunjing, Z.; Castellón, S.M.; Bonten, C.; Alstadt, V. Chemical modification and foam processing of polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.C.; Wu, R.; Cheng, H.; Li, S.; Siao, Y.; Kong, D.; Jang, G. Crystallinity and dimensional stability of biaxial oriented poly (lactic acid) films. Polym. Degrad. Stab. 2010, 95, 1292–1298. [Google Scholar] [CrossRef]
- Manich, A.M.; Miguel, R.; Lucas, J.; Franco, F.; Baena, B.; Carilla, J.; Montero, L.; Cayuela, D. Texturing, stretching and relaxation behaviour of polylactide multifilament yarns. Text. Res. J. 2011, 81, 1788–1795. [Google Scholar] [CrossRef]
- Solarski, S.; Ferreira, M.; Devaux, E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 2005, 46, 11187–11192. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, B.; Cheng, G. Development and filtration performance of polylactic acid meltblowns. Text. Res. J. 2010, 79, 771–779. [Google Scholar] [CrossRef]
- Puchalski, M.; Sulak, K.; Chrzanowski, M.; Sztajnowski, S.; Krucińska, I. Effect of processing variables on the thermal and physical properties of poly (L-lactide) spunbond fabrics. Text. Res. J. 2015, 85, 535–547. [Google Scholar] [CrossRef]
- Krucińska, I.; Surma, B.; Chrzanowski, M.; Skrzetuska, E.; Puchalski, M. Application of melt-blown technology in the manufacturing of a solvent vapor-sensitive, non-woven fabric composed of poly (lactic acid) loaded with multi-walled carbon nanotubes. Text. Res. J. 2013, 83, 859–870. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Beslikas, T.; Gigis, J.; Christoforides, J.; Bikiaris, D. Crystallization and enzymatic hydrolysis of PLA grade for orthopaedics. Adv. Polym. Technol. 2010, 29, 280–299. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Q.; Wang, X.; Gao, W.; Zhao, W. Antibacterial properties of pla nonwoven medical dressings coated with nanostructured silver. Fibers Polym. 2008, 9, 556–560. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Hayes, D.; Wadsworth, L.; Dunlap, R. Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text. Res. J. 2016, 86, 1343–1355. [Google Scholar] [CrossRef]
- Czekalski, J.; Krucińska, I.; Kowalska, S.; Puchalski, M. Effect of twist stabilisation and dyeing on the structural and physical properties of agricultural strings. Fibres Text. East. Eur. 2013, 6, 39–44. [Google Scholar]
- Tsuji, H. Polylactides. In Biopolymers. Polyesters III—Applications and Commercial Products; Doi, Y., Steinbüchel, A., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2002; pp. 129–177. ISBN 978-3-527-30225-3. [Google Scholar]
- Henton, D.E.; Gruber, P.; Lunt, J.; Randall, J. Polylactic acid technology. In Natural Fibers, Biopolymers, and Biocomposites; Mohanty, A.K., Misra, M., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 527–577. [Google Scholar]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly (lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Saha, S.K.; Tsuji, H. Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly (l-lactic acid) s. Polym. Degrad. Stab. 2006, 91, 1665–1673. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, X.; Duan, J.; Yang, J.; Huang, T.; Qi, X.; Wang, Y. Comparison study of hydrolytic degradation behaviors between α′- and α-poly (l-lactide). Polym. Degrad. Stab. 2018, 148, 1–9. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Dottori, M.; Armentano, I.; Kenny, J.M.; Camino, G. Effect of temperature and nanoparticle type on hydrolytic degradation of poly (lactic acid) nanocomposites. Polym. Degrad. Stab. 2011, 96, 2120–2129. [Google Scholar] [CrossRef]
- Duan, J.; Xie, Y.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y.; Zhang, J. Graphene oxide induced hydrolytic degradation behavior changes of poly (l-lactide) in different mediums. Polym. Test. 2016, 56, 220–228. [Google Scholar] [CrossRef]
- Chen, H.; Shen, Y.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. Molecular ordering and α′-form formation of poly (l-lactide) during the hydrolytic degradation. Polymer 2013, 54, 6644–6653. [Google Scholar] [CrossRef]
- Simmons, H.; Kontopoulou, M. Hydrolytic degradation of branched pla produced by reactive extrusion. Polym. Degrad. Stab. 2018, 158, 228–237. [Google Scholar] [CrossRef]
- Xu, L.; Crawford, K.; Gorman, C.B. Effects of temperature and ph on the degradation of poly (lactic acid) brushes. Macromolecules 2011, 44, 4777–4782. [Google Scholar] [CrossRef]
- Andrzejewska, A. One Year Evaluation of material properties changes of polylactide parts in various hydrolytic degradation conditions. Polymers 2019, 11, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuadri, A.A.; Martín-Alfonso, J.E. Thermal, thermo-oxidative and thermomechanical degradation of pla: A comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 2018, 150, 37–45. [Google Scholar] [CrossRef]
- Acioli-Moura, R.; Sun, X.S. Thermal degradation and physical aging of poly (lactic acid) and its blends with starch. Polym. Eng. Sci. 2008, 48, 829–836. [Google Scholar] [CrossRef]
- Chávez-Montes, W.M.; González, G.; López-Martínez, E.I.; de Lira-Gómez, P.; de Lourdes Ballinas, E.; Flores-Gallardo, S. Effect of artificial weathering on pla/nanocomposite molecular weight distribution. Polymers 2015, 7, 760–776. [Google Scholar] [CrossRef] [Green Version]
- Sztajnowski, S.; Krucińska, I.; Sulak, K.; Puchalski, M.; Wrzosek, H.; Bilska, J. Effects of the artificial weathering of biodegradable spun-bonded pla nonwovens in respect to their application in agriculture. Fibres Text. East. Eur. 2012, 96, 89–95. [Google Scholar]
- Zhang, H.; McGill, E.; Ohep Gomez, C.; Carson, S.; Neufeld, K.; Hawthotne, I.; Smukler, S. Disintegration of compostable foodware and packaging and its effect on microbial activity and community composition in municipal composting. Int. Biodeterior. Biodegrad. 2017, 125, 157–165. [Google Scholar] [CrossRef]
- Gutowska, A.; Jóźwicka, J.; Sobczak, S.; Tomaszewski, W.; Sulak, K.; Miros, P.; Owczarek, M.; Szalczyńska, M.; Ciechańska, D.; Krucińska, I. In-compost biodegradation of pla nonwovens. Fibres Text. East. Eur. 2014, 22, 99–106. [Google Scholar]
- Rudnik, E.; Briassoulis, D. Degradation Behaviour of poly (lactic acid) fiLms and fiBres in Soil under mediterranean fiEld conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Puchalski, M.; Siwek, P.; Panayotov, N.; Berova, M.; Kowalska, S.; Krucińska, I. Influence of various climatic conditions on the structural changes of semicrystalline pla spun-bonded mulching nonwovens during outdoor composting. Polymers 2019, 11, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the influence of pla molecular structure on the crystalline forms (α′ and α) and mechanical properties of wet spinning fibres. Polymers 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, W.; Richert, J.; Rydz, J.; Musiol, M.; Adamus, G.; Janeczek, H.; Kowalczuk, M. Degradability studies of poly (l-lactide) after multi-reprocessing experiments in extruder. Polym. Degrad. Stab. 2012, 97, 1891–1897. [Google Scholar] [CrossRef]
- Mao, Y.; Wei, W.; Zhang, J.; Li, Y. A Novel determination technique of polymer viscosity-average molecular weights with flow piezoelectric quartz crystal viscosity sensing. J. Appl. Polym. Sci. 2001, 82, 63–69. [Google Scholar] [CrossRef]
- Behera, K.; Chang, Y.-H.; Chiu, F.-C.; Yang, J.-C. Characterization of poly (lactic acid) s with reduced molecular weight fabricated through an autoclave process. Polym. Test. 2017, 60, 132–139. [Google Scholar] [CrossRef]
- Puchalski, M.; Krucińska, I.; Sulak, K.; Chrzanowski, M.; Wrzosek, H. Influence of the calender temperature on the crystallization behaviors of pla spun bonded non-woven fabrics. Text. Res. J. 2013, 83, 1775–1785. [Google Scholar] [CrossRef]
- Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly (lactide -co- glycolide) fiber: An overview. J. Eng. Fibers Fabr. 2014, 9, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Kenley, R.A.; Lee, M.O.; Mahoney, T.R.; Sanders, L.M. Poly (lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules 1987, 20, 2398–2403. [Google Scholar] [CrossRef]
- Ho, K.-L.G.; Pometto III, A.L.; Gadea-Rivas, A.; Briceno, J.A.; Rojas, A. Degradation of polylactic acid (pla) plastic in costa rican soil and iowa state university compost rows. J. Environ. Polym. Degrad. 1999, 7, 173–177. [Google Scholar] [CrossRef]
- Pitt, G.G.; Gratzl, M.M.; Kimmel, G.L.; Surles, J.; Schindler, A. Aliphatic polyesters II. The degradation of poly (dl-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 1981, 2, 215–220. [Google Scholar] [CrossRef]
Sample | Characteristic of Raw Polymer | Characteristic of Fibre | ||||||
---|---|---|---|---|---|---|---|---|
Nature Works Symbol of PLA | Contents of d-Lactide Isomer (%) | Mw (kg/mol) | Mw/Mn | Total Draw Ratio (%) | Crystal Form * | χc ** (%) | Linear Mass (tex) | |
PLA12-DR400 | Ingeo 4060D | 12 | 119 | 1.40 | 400 | − | amorphous | 158.00 (2.09 ***) |
PLA12-DR600 | Ingeo 4060D | 12 | 119 | 1.40 | 600 | α′ | 1.2 | 80.33 (0.90) |
PLA2.5-DR450 | Ingeo 2002D | 2.5 | 112.6 | 1.46 | 450 | α′ | 16.6 | 121.00 (1.43) |
PLA2.5-DR550 | Ingeo 2002D | 2.5 | 112.6 | 1.46 | 550 | α′ | 33.5 | 72.67 (0.79) |
PLA1.4-DR500 | Ingeo 6201D | 1.4 | 59.1 | 1.29 | 500 | α′ | 47.6 | 96.00 (1.04) |
PLA1.4-DR650 | Ingeo 6201D | 1.4 | 59.1 | 1.29 | 650 | A | 53.8 | 68.33 (0.52) |
Sample | pH of Medium | A ± SE | ke ± SE (Days−1) | R | ton (Days) |
---|---|---|---|---|---|
PLA12-DR400 | 3.5 | 4.65 ± 0.13 | 0.29 ± 0.03 | 0.962 | 0.33 |
PLA12-DR400 | 5 | 4.71 ± 0.12 | 0.31 ± 0.03 | 0.959 | 0.34 |
PLA12-DR400 | 10 | 4.78 ± 0.14 | 0.38 ± 0.03 | 0.980 | 0.43 |
PLA12-DR600 | 3.5 | 4.86 ± 0.06 | 0.30 ± 0.01 | 0.988 | 0.83 |
PLA12-DR600 | 5 | 4.85 ± 0.05 | 0.34 ± 0.01 | 0.993 | 0.72 |
PLA12-DR600 | 10 | 4.80 ± 0.10 | 0.36 ± 0.02 | 0.988 | 0.69 |
PLA2.5-DR450 | 3.5 | 4.73 ± 0.06 | 0.11 ± 0.04 | 0.989 | 1.12 |
PLA2.5-DR450 | 5 | 4.74 ± 0.09 | 0.12 ± 0.01 | 0.974 | 1.15 |
PLA2.5-DR450 | 10 | 4.76 ± 0.05 | 0.12 ± 0.01 | 0.990 | 1.15 |
PLA2.5-DR550 | 3.5 | 4.78 ± 0.04 | 0.13 ± 0.03 | 0.992 | 1.33 |
PLA2.5-DR550 | 5 | 4.77 ± 0.06 | 0.11 ± 0.01 | 0.973 | 1.39 |
PLA2.5-DR550 | 10 | 4.81 ± 0.04 | 0.15 ± 0.04 | 0.997 | 1.35 |
PLA1.4-DR500 | 3.5 | 4.78 ± 0.03 | 0.10 ± 0.01 | 0.988 | 1.70 |
PLA1.4-DR500 | 5 | 4.73 ± 0.04 | 0.08 ± 0.01 | 0.969 | 1.63 |
PLA1.4-DR500 | 10 | 4.72 ± 0.05 | 0.08 ± 0.01 | 0.972 | 1.64 |
PLA1.4-DR650 | 3.5 | 4.77 ± 0.02 | 0.08 ± 0.01 | 0.992 | 2.01 |
PLA1.4-DR650 | 5 | 4.76 ± 0.02 | 0.08 ± 0.01 | 0.988 | 2.01 |
PLA1.4-DR650 | 10 | 4.79 ± 0.04 | 0.09 ± 0.01 | 0.976 | 2.12 |
Sample | pH of Medium | A ± SE | kd ± SE (Days−1) | R | t50% (Days) |
---|---|---|---|---|---|
PLA12-DR400 | 3.5 | 4.60 ± 0.16 | 0.69 ± 0.04 | 0.970 | 1.09 |
PLA12-DR400 | 5 | 4.57 ± 0.18 | 0.70 ± 0.04 | 0.962 | 1.09 |
PLA12-DR400 | 10 | 4.59 ± 0.17 | 0.70 ± 0.04 | 0.959 | 1.19 |
PLA12-DR600 | 3.5 | 4.44 ± 0.09 | 0.65 ± 0.02 | 0.985 | 1.35 |
PLA12-DR600 | 5 | 4.44 ± 0.08 | 0.65 ± 0.02 | 0.989 | 1.29 |
PLA12-DR600 | 10 | 4.50 ± 0.08 | 0.67 ± 0.02 | 0.988 | 1.31 |
PLA2.5-DR450 | 3.5 | 4.57 ± 0.19 | 0.66 ± 0.04 | 0.954 | 1.15 |
PLA2.5-DR450 | 5 | 4.56 ± 0.19 | 0.68 ± 0.05 | 0.954 | 1.06 |
PLA2.5-DR450 | 10 | 4.59 ± 0.14 | 0.68 ± 0.03 | 0.969 | 1.10 |
PLA2.5-DR550 | 3.5 | 4.45 ± 0.08 | 0.63 ± 0.02 | 0.989 | 1.33 |
PLA2.5-DR550 | 5 | 4.39 ± 0.10 | 0.61 ± 0.02 | 0.980 | 1.29 |
PLA2.5-DR550 | 10 | 4.43 ± 0.09 | 0.63 ± 0.02 | 0.986 | 1.34 |
PLA1.4-DR500 | 3.5 | 4.71 ± 0.10 | 0.64 ± 0.02 | 0.982 | 1.53 |
PLA1.4-DR500 | 5 | 4.68 ± 0.09 | 0.66 ± 0.02 | 0.987 | 1.57 |
PLA1.4-DR500 | 10 | 4.77 ± 0.11 | 0.63 ± 0.03 | 0.978 | 1.54 |
PLA1.4-DR650 | 3.5 | 4.66 ± 0.07 | 0.62 ± 0.02 | 0.990 | 1.70 |
PLA1.4-DR650 | 5 | 4.68 ± 0.10 | 0.61 ± 0.03 | 0.978 | 1.67 |
PLA1.4-DR650 | 10 | 4.64 ± 0.08 | 0.59 ± 0.02 | 0.985 | 1.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giełdowska, M.; Puchalski, M.; Szparaga, G.; Krucińska, I. Investigation of the Influence of PLA Molecular and Supramolecular Structure on the Kinetics of Thermal-Supported Hydrolytic Degradation of Wet Spinning Fibres. Materials 2020, 13, 2111. https://doi.org/10.3390/ma13092111
Giełdowska M, Puchalski M, Szparaga G, Krucińska I. Investigation of the Influence of PLA Molecular and Supramolecular Structure on the Kinetics of Thermal-Supported Hydrolytic Degradation of Wet Spinning Fibres. Materials. 2020; 13(9):2111. https://doi.org/10.3390/ma13092111
Chicago/Turabian StyleGiełdowska, Małgorzata, Michał Puchalski, Grzegorz Szparaga, and Izabella Krucińska. 2020. "Investigation of the Influence of PLA Molecular and Supramolecular Structure on the Kinetics of Thermal-Supported Hydrolytic Degradation of Wet Spinning Fibres" Materials 13, no. 9: 2111. https://doi.org/10.3390/ma13092111
APA StyleGiełdowska, M., Puchalski, M., Szparaga, G., & Krucińska, I. (2020). Investigation of the Influence of PLA Molecular and Supramolecular Structure on the Kinetics of Thermal-Supported Hydrolytic Degradation of Wet Spinning Fibres. Materials, 13(9), 2111. https://doi.org/10.3390/ma13092111