Laser Powder Bed Fusion of Pure Tungsten: Effects of Process Parameters on Morphology, Densification, Microstructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tungsten Powder Feedstock
2.2. Experimental Methods and Parameters
2.3. Materials Characterization
3. Results and Discussion
3.1. Surface Morphology
3.2. Relative Density
3.3. Microstructure
4. Conclusions
- In terms of surface morphology, a large number of surface defects including gas, humps, cavities, and pores were formed when the low laser power was applied. To obtain a surface with smooth and dense morphology, high laser power should be used in the LPBF process of pure tungsten.
- The pure tungsten samples with the highest relative density of 98.31% were prepared by using the process parameter combinations: laser power of 300 W, scanning speed of 400 mm/s, hatch spacing of 0.08 mm, and layer thickness of 0.02 mm. Also, compared with scanning speed and hatch spacing, laser power plays a more critical role in the densification process of LPBF for pure tungsten.
- The typical microstructure of the as-built tungsten sample was characterized and investigated. The elongated curved grains gradually transformed into fine straight columnar grains with the scanning speed increased from 200 mm/s to 400 mm/s, and the average grain size decreased from 12.938 μm to 8.977 μm. Simultaneously, the hatch spacing had a slight influence on the final grain morphology but had no significant effect on the average grain size.
- The microcracks are inevitable in the tungsten samples fabricated by LPBF. Effective methods of the reduction or elimination of microcracks need to be investigated in the future. Moreover, a relationship between the process parameters and the solidified microstructure can be established in LPBF. Therefore, the microstructure can be tailored to meet different requirements by applying specific process parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fulton, G.; Lunev, A. Probing the correlation between phase evolution and growth kinetics in the oxide layers of tungsten using Raman spectroscopy and EBSD. Corros. Sci. 2020, 162, 108221. [Google Scholar] [CrossRef]
- Deng, S.; Yuan, T.; Li, R.; Zeng, F.; Liu, G.; Zhou, X. Spark plasma sintering of pure tungsten powder: Densification kinetics and grain growth. Powder Technol. 2017, 310, 264–271. [Google Scholar] [CrossRef]
- Xiao, F.; Miao, Q.; Wei, S.; Li, Z.; Sun, T.; Xu, L. Microstructure and mechanical properties of W-ZrO2 alloys by different preparation techniques. J. Alloy. Compd. 2019, 774, 210–221. [Google Scholar] [CrossRef]
- Fukuda, M.; Yabuuchi, K.; Nogami, S.; Hasegawa, A.; Tanaka, T. Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR. J. Nucl. Mater. 2014, 455, 460–463. [Google Scholar] [CrossRef]
- Tan, X.Y.; Li, P.; Luo, L.M.; Xu, Q.; Tokunaga, K.; Zan, X.; Wu, Y.C. Effect of second-phase particles on the properties of W-based materials under high-heat loading. Nucl. Mater. Energy 2016, 9, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; Patra, A.; Karak, S.K.; Ciupinski, L. Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Nb alloys. Int. J. Refract. Met. H. 2018, 71, 70–81. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Ataee, A.; Li, Y.; Brandt, M.; Wen, C. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater. 2018, 158, 354–368. [Google Scholar] [CrossRef]
- Zhang, L.; Song, B.; Fu, J.J.; Wei, S.S.; Yang, L.; Yan, C.Z.; Li, H.; Gao, L.; Shi, Y.S. Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization. J. Manuf. Process. 2020, 56, 1166–1177. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, J.; Li, C.; He, J.; Li, W.; Yuan, T.; Li, R. Microstructure tailoring to enhance strength and ductility in pure tantalum processed by selective laser melting. Mat. Sci. Eng. 2020, 685, 139352. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Ma, J.; Liu, W.; Shen, Z. Densification and crack suppression in selective laser melting of pure molybdenum. Mater. Design 2017, 129, 44–52. [Google Scholar] [CrossRef]
- Enneti, R.K.; Morgan, R.; Atre, S.V. Effect of process parameters on the Selective Laser Melting (SLM) of tungsten. Int. J. Refract. Met. H. 2018, 71, 315–319. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Zhang, D.; Shen, Z.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Zhou, X.; Ma, J.; Liu, W.; Shen, Z. Dense pure tungsten fabricated by selective laser melting. Appl. Sci. 2017, 7, 430. [Google Scholar] [CrossRef]
- Wen, S.F.; Wang, C.; Zhou, Y.; Duan, L.C.; Wei, Q.S.; Yang, S.F.; Shi, Y.S. High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Opt. Laser Technol. 2019, 116, 128–138. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, P.; Tan, C.; Dong, D.; Ma, W.; Yu, K. Selective Laser Melting and Remelting of Pure Tungsten. Adv. Eng. Mater. 2020, 22, 1901352. [Google Scholar] [CrossRef]
- Tan, C.L.; Zhou, K.S.; Ma, W.Y.; Attard, B.; Zhang, P.P.; Kuang, T.C. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mat. 2018, 19, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Gu, D.; Xi, L.; Zhang, H.; Zhang, J.; Yang, J.; Wang, R. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int. J. Refract. Met. H. 2019, 84, 105025. [Google Scholar] [CrossRef]
- Sidambe, A.T.; Tian, Y.; Prangnell, P.B.; Fox, P. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int. J. Refract. Met. H. 2019, 78, 254–263. [Google Scholar] [CrossRef]
- Ivekovic, A.; Omidvari, N.; Vrancken, B.; Lietaert, K.; Thijs, L.; Vanmeensel, K.; Vleugels, J.; Kruth, J.P. Selective laser melting of tungsten and tungsten alloys. Int. J. Refract. Met. H. 2018, 72, 27–32. [Google Scholar] [CrossRef]
- Gu, D.; Guo, M.; Zhang, H.; Sun, Y.; Wang, R.; Zhang, L. Effects of laser scanning strategies on selective laser melting of pure tungsten. Int. J. Extrem. Manuf. 2020, 2, 025001. [Google Scholar] [CrossRef]
- Xie, Y.J.; Yang, H.C.; Wang, X.B.; Zhao, L.; Kuang, C.J.; Han, W. Control of wall thickness and surface morphology of tungsten thin wall parts by adjusting selective laser melting parameters. J. Iron Steel Res. Int. 2019, 26, 182–190. [Google Scholar] [CrossRef]
- Wu, F.; Sun, Z.; Li, B.; Chen, H.; Guo, S.; Zhu, Y. Influence of laser energy input on fabricating pure tungsten thin wall grids by selective laser melting. Mater. Res. Express 2019, 6, 126526. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. [Google Scholar] [CrossRef]
- Bertoli, U.S.; Wolfer, A.J.; Matthews, M.J.; Delplanque, J.P.R.; Schoenung, J.M. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Design 2017, 113, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Tolias, P.; EUROfusion MST1 Team. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl. Mater. Energy 2017, 13, 42–57. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Yadroitsava, I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototy. 2015, 10, 67–76. [Google Scholar] [CrossRef]
- Vrancken, B.; Ganeriwala, R.K.; Matthews, M.J. Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: Experiment and simulation. Acta Mater. 2020, 194, 464–472. [Google Scholar] [CrossRef]
- Wang, D.; Li, K.; Yu, C.F.; Ma, J.; Liu, W.; Shen, Z. Cracking behavior in additively manufactured pure tungsten. Acta Metall. Sin. 2019, 32, 127–135. [Google Scholar] [CrossRef] [Green Version]
No. | LP/(W) | SS/(mm/s) | HS/(mm) | RD/(%) | No. | LP/(W) | SS/(mm/s) | HS/(mm) | RD/(%) |
---|---|---|---|---|---|---|---|---|---|
T1 | 200 | 200 | 0.06 | 91.42 | T15 | 250 | 300 | 0.1 | 94.27 |
T2 | 200 | 200 | 0.08 | 91.69 | T16 | 250 | 400 | 0.06 | 95.03 |
T3 | 200 | 200 | 0.1 | 89.26 | T17 | 250 | 400 | 0.08 | 95.74 |
T4 | 200 | 300 | 0.06 | 86.18 | T18 | 250 | 400 | 0.1 | 90.65 |
T5 | 200 | 300 | 0.08 | 90.23 | T19 | 300 | 200 | 0.06 | 95.47 |
T6 | 200 | 300 | 0.1 | 90.02 | T20 | 300 | 200 | 0.08 | 96.87 |
T7 | 200 | 400 | 0.06 | 90.88 | T21 | 300 | 200 | 0.1 | 97.38 |
T8 | 200 | 400 | 0.08 | 88.86 | T22 | 300 | 300 | 0.06 | 96.17 |
T9 | 200 | 400 | 0.1 | 85.81 | T23 | 300 | 300 | 0.08 | 97.75 |
T10 | 250 | 200 | 0.06 | 92.62 | T24 | 300 | 300 | 0.1 | 97.15 |
T11 | 250 | 200 | 0.08 | 90.87 | T25 | 300 | 400 | 0.06 | 98.17 |
T12 | 250 | 200 | 0.1 | 91.71 | T26 | 300 | 400 | 0.08 | 98.31 |
T13 | 250 | 300 | 0.06 | 92.61 | T27 | 300 | 400 | 0.1 | 96.47 |
T14 | 250 | 300 | 0.08 | 93.39 | — | — | — | — | — |
Item | Degree of Freedom | Sum of Square | Mean Square | Contributions | F-Value | p-Value |
---|---|---|---|---|---|---|
LP | 2 | 270.811 | 133.906 | 79.58% | 43.57 | 0.000 |
SS | 2 | 0.424 | 0.212 | 0.13% | 0.07 | 0.934 |
HD | 2 | 6.839 | 3.419 | 2.03% | 1.11 | 0.348 |
Error | 20 | 61.469 | 3.073 | 18.28% | – | – |
Total | 26 | 336.543 | 100% | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, Y.; Zhou, B.; Wei, Z. Laser Powder Bed Fusion of Pure Tungsten: Effects of Process Parameters on Morphology, Densification, Microstructure. Materials 2021, 14, 165. https://doi.org/10.3390/ma14010165
Li J, Wu Y, Zhou B, Wei Z. Laser Powder Bed Fusion of Pure Tungsten: Effects of Process Parameters on Morphology, Densification, Microstructure. Materials. 2021; 14(1):165. https://doi.org/10.3390/ma14010165
Chicago/Turabian StyleLi, Junfeng, Yunxiao Wu, Bokang Zhou, and Zhengying Wei. 2021. "Laser Powder Bed Fusion of Pure Tungsten: Effects of Process Parameters on Morphology, Densification, Microstructure" Materials 14, no. 1: 165. https://doi.org/10.3390/ma14010165
APA StyleLi, J., Wu, Y., Zhou, B., & Wei, Z. (2021). Laser Powder Bed Fusion of Pure Tungsten: Effects of Process Parameters on Morphology, Densification, Microstructure. Materials, 14(1), 165. https://doi.org/10.3390/ma14010165