Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats
Abstract
:1. Introduction
1.1. Mechanism of Osteoinductive Process in Microporosity of Ceramics
1.2. Modification of Crystallographic Properties of Synthetic HAp
2. Materials and Methods
2.1. HAp Block
2.2. Preparations of Partially Dissolved and Precipitated HAp Block (PDP-HAp)
2.3. Characterization of PDP-HAp
2.4. Implantation on Rat Skull Periosteum
2.5. Histological Observations
2.6. Morphometric Analysis
3. Results
3.1. SEM Micrographs of Original HAp and PDP-HAp
3.2. Characterization of PDP-HAp
3.3. Histological Findings
3.4. Morphometric Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ripamonti, U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1996, 17, 31–35. [Google Scholar] [CrossRef]
- Gosain, A.K.; Song, L.; Riordan, P.; Amarante, M.T.; Nagy, P.G.; Wilson, C.R.; Toth, J.M.; Ricci, J.L. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: Part 1. Plast. Reconstr. Surg. 2002, 109, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Van Den Doel, M.; Li, S.; Van Blitterswijk, C.A.; De Groot, K.; De Bruijn, J.D. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J. Mater. Sci. Mater. Med. 2002, 13, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Sees, T.M.; Van Den Doel, M.A.; Van Blitterswijk, C.A.; De Groot, K. Osteoinduction by biomaterials--physicochemical and structural influences. J. Biomed. Mater. Res. A 2006, 77, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R. Bone: Formation by autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Yuan, H.; Van Der Valk, C.M.; Meijer, G.; Van Blitterswijk, C.A.; De Groot, K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W.; Schantz, J.T.; Lam, C.X.; Tan, K.C.; Lim, T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 2007, 1, 245–260. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, Y.; Dunne, N.; Li, X. Effect of microporosity on scaffolds for bone tissue engineering. Regen. Biomater. 2018, 5, 115–124. [Google Scholar] [CrossRef]
- Polak, S.J.; Lan Levengood, S.K.; Wheeler, M.B.; Maki, A.J.; Clark, S.G.; Joshson, A.J.W. Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Acta Biomater. 2011, 7, 1760–1771. [Google Scholar] [CrossRef]
- Bohner, M.; Baroud, G.; Bernstein, A.; Dobelin, N.; Galea, L.; Hesse, B.; Heuberger, R.; Meille, S.; Michel, P.; Rechenberg, B.; et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of beta-tricalcium phosphate bone substitutes. Mater. Today 2017, 20, 106–115. [Google Scholar] [CrossRef]
- Mehmani, A.; Prodanovic, M. The effect of microporosity on transport properties in porous media. Adv. Water Resour. 2014, 63, 104–119. [Google Scholar] [CrossRef]
- Rouahi, M.; Gallet, O.; Champion, E.; Dentzer, J.; Hardouin, P.; Anselme, K. Influence of hydroxyapatite microstructure on human bone cell response. J. Biomed. Mater. Res. A 2006, 78, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Osako, Y.; Tanaka, M.; Hojo, M.; Hollister, S.J. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 2006, 27, 3964–3972. [Google Scholar] [CrossRef] [PubMed]
- Yanai, R.; Tetsuo, F.; Ito, S.; Itsumi, M.; Yoshizumi, J.; Maki, T.; Mori, Y.; Kubota, Y.; Kajioka, S. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 2019, 83, 102058. [Google Scholar] [CrossRef]
- Akazawa, T.; Murata, M.; Sasaki, T.; Tazaki, J.; Kobayashi, M.; Kanno, T.; Nakamura, K.; Arisue, M. Biodegradation and bioabsorption innovation of the functionally graded bovine bone-originated apatite with blood permeability. J. Biomed. Mater. Res. A 2006, 76, 44–51. [Google Scholar] [CrossRef]
- Akazawa, T.; Murata, M.; Takahata, M.; Ding, X.J.; Abe, Y.; Nakamura, K.; Hino, J.; Tazaki, J.; Ito, K.; Ito, M.; et al. Characterization of Microstructure and Bio-Absorption of the Hydroxyapatite Ceramics Modified by a Partial Dissolution-Precipitation Technique Using Supersonic Treatment. J. Ceram. Soc. Jap. 2010, 118, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Sato, D.; Hino, J.; Akazawa, T.; Tazaki, J.; Ito, K.; Arisue, M. Acid-insoluble human dentin as carrier material for recombinant human BMP-2. J. Biomed. Mater. Res. A 2012, 100, 571–577. [Google Scholar] [CrossRef]
- Shakya, M.; Yokozeki, K.; Akazawa, T.; Murata, M. Rapid bone induction of cortical bone treated with ultrasonic demineralization in acidic electrolyzed water. J. Hard Tissue Biol. 2018, 27, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Akazawa, T.; Murata, M.; Tabata, Y.; Ito, M. Biomimetic Microstructure and Biocompatibility of Hydroxyapatite Porous Ceramics Designed by a Partial Dissolution-Precipitation Technique with Supersonic Treatment. In Bone Regeneration; In Tech Publisher: Rijeka, Croatia, 2012; pp. 275–292. [Google Scholar]
- Murata, M.; Akazawa, T.; Mitsugi, M.; Kabir, M.A.; Minamida, Y.; Um, I.W.; Kim, K.W.; Kim, Y.K.; Sun, Y.; Qin, C. Autograft of Dentin Materials for Bone Regeneration. In Biomaterials Science and Biomedical Applications; Pignatello, R., Ed.; In Tech: Rijeka, Croatia, 2013; pp. 391–403. [Google Scholar]
- Murata, M.; Okubo, N.; Shakya, M.; Kabir, M.A.; Yokozeki, K.; Zhu, B.; Ishikawa, M.; Kitamura, R.; Akazawa, T. Dentin Materials as Biological Scaffolds for Tissue Engineering. In Biomaterial—Supported Tissue Reconstruction or Regeneration; Barbeck, M., Ed.; IntechOpen: London, UK, 2019; pp. 25–36. [Google Scholar]
- Murata, M.; Akazawa, T.; Tazaki, J.; Ito, K.; Sasaki, T.; Yamamoto, M.; Tabata, Y.; Arisue, M. Blood permeability of a novel ceramic scaffold for bone morphogenetic protein-2. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 469–475. [Google Scholar] [CrossRef]
- Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.; Povey, M.J.; Parker, N.G. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4825–4832. [Google Scholar] [CrossRef] [Green Version]
- Akazawa, T.; Murata, M.; Minamida, Y.; Kabir, A.; Hino, J.; Tazaki, J.; Ito, M.; Kimura, I. Bioactive surface structure and bio-absorption of human dentin granules designed by the supersonic demineralization and biomimetic coating technique. J. Hard Tissue Biol. 2012, 21, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Trubiani, O.; Marconi, G.D.; Pierdomenico, S.D.; Piattelli, A.; Diomede, F.; Pizzicannella, J. Human oral stem cells, Biomaterials and extracellular vesicles: A promising tool in bone tissue repair. Int. J. Mol. Sci. 2019, 20, 4987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, M.; Nakasu, M.; Matsumoto, T.; Okihana, H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J. Biomed. Mater. Res. A 2007, 82, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving biosciences research reporting: The Arrive guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Weibel, E.R. Stereological Methods: Practical Methods for Biological Morphometry; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Tazaki, J.; Murata, M.; Akazawa, T.; Yamamoto, M.; Arisue, M.; Shibata, T.; Nagayasu, H.; Tabata, Y. The effect of partial dissolution-precipitation treatment on calcium phosphate ceramics in the release of BMP-2 and osteoinduction. J. Hard Tissue. Biol. 2012, 21, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Maki, F.; Sato, D.; Shibata, T.; Arisue, M. Bone augmentation by onlay implant using recombinant human BMP-2 and collagen on adult rat skull without periosteum. Clin. Oral Impl. Res. 2000, 11, 289–295. [Google Scholar] [CrossRef]
- Ding, X.J.; Takahata, M.; Akazawa, T.; Iwasaki, N.; Abe, Y.; Komatsu, M.; Murata, M.; Ito, M.; Abumi, K.; Minami, K. Improved bioabsorbability of synthetic hydroxyapatite through partial dissolution-precipitation of its surface. J. Mater. Sci. Mater. Med. 2011, 22, 1247–1255. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef]
- Tomita, M.; Reinhold, M.I.; Molkentin, J.D.; Naski, M.C. Calcineurin and NFAT4 induce chondrogenesis. J. Biol. Chem. 2002, 277, 42214–42218. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone regeneration. J. Clin. Periodontol. 2019, 46, 82–91. [Google Scholar] [CrossRef]
Groups | Bone | HAp | CT |
---|---|---|---|
PDP-HAp 3 M | 0.0 ± 0.0 * | 15.0 ± 1.7 | 85.0 ± 1.7 |
PDP-HAp 9 M | 12.0 ± 5.3 ** | 13.0 ± 2.1 | 75.0 ± 3.7 |
PDP-HAp/BMP-2 3 M | 77.0 ± 2.1 * | 14.0 ± 0.5 | 9.0 ± 1.7 |
PDP-HAp/BMP-2 9 M | 86.0 ± 1.4 ** | 11.0 ± 0.8 | 3.0 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murata, M.; Hino, J.; Kabir, M.A.; Yokozeki, K.; Sakamoto, M.; Nakajima, T.; Akazawa, T. Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats. Materials 2021, 14, 196. https://doi.org/10.3390/ma14010196
Murata M, Hino J, Kabir MA, Yokozeki K, Sakamoto M, Nakajima T, Akazawa T. Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats. Materials. 2021; 14(1):196. https://doi.org/10.3390/ma14010196
Chicago/Turabian StyleMurata, Masaru, Jun Hino, Md. Arafat Kabir, Kenji Yokozeki, Michiko Sakamoto, Takehiko Nakajima, and Toshiyuki Akazawa. 2021. "Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats" Materials 14, no. 1: 196. https://doi.org/10.3390/ma14010196
APA StyleMurata, M., Hino, J., Kabir, M. A., Yokozeki, K., Sakamoto, M., Nakajima, T., & Akazawa, T. (2021). Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats. Materials, 14(1), 196. https://doi.org/10.3390/ma14010196