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Abstract: Poly (lactic acid) (PLA) is the most widely available commercial bioplastic that is used in
various medical and packaging applications and three-dimensional filaments. However, because
neat PLA is brittle, it conventionally has been blended with ductile polymers and plasticizers. In this
study, PLA was blended with the high-ductility biopolymer poly (butylene-sebacate–co–terephthalate)
(PBSeT), and hexamethylene diisocyanate (HDI) was applied as a crosslinking compatibilizer to
increase the miscibility between the two polymers. PLA (80%) and PBSeT (20%) were combined
with various HDI contents in the range 0.1–1.0 parts-per-hundred rubber (phr) to prepare blends,
and the resulting physical, thermal, and hydrolysis properties were analyzed. Fourier-transform
infrared analysis confirmed that –NH–C=OO− bonds had formed between the HDI and the other
polymers and that the chemical bonding had influenced the thermal behavior. All the HDI-treated
specimens showed tensile strengths and elongations higher than those of the control. In particular,
the 0.3-phr-HDI specimen showed the highest elongation (exceeding 150%) and tensile strength.
In addition, all the specimens were hydrolyzed under alkaline conditions, and all the HDI-treated
specimens degraded faster than the neat PLA one.

Keywords: PBSeT; blend; crosslinking; HDI

1. Introduction

With the increasing urgency to reduce carbon-dioxide emissions, numerous eco-
friendly, sustainable, biomass-based materials have been studied recently to manage plastic
waste and neutralize CO2 emissions in the production of plastics [1–3]. Poly (lactic acid)
(PLA) is a commercially available 100% biomass-based compostable polymer that has been
used for research on medical scaffolds, artificial bone structures, and drug delivery [4–7]
and has been widely used and studied as a packaging material for rigid food containers
and as a component of flexible films [8–10]. In recent years, PLA has been blended with
natural fibers and three-dimensional (3D) filaments to produce materials for commercial
application to automotive interior parts [11–14].

However, despite such applications, PLA also has several disadvantages originating
from its physical properties [15–17]. For example, despite showing high tensile strength,
PLA also shows dramatically low elongation and impact resistance, both of which are
major obstacles to the commercial application of neat PLA [15,18,19]. Many studies have
explored various methods of decreasing the brittleness and increasing the melt strength of
PLA by incorporating plasticizers or chain extenders with neat PLA [19–21].

Moreover, other studies have shown that biodegradable elastomeric polymers are
good candidates for decreasing PLA brittleness while maintaining biodegradability. For
example, although PLA has been blended with high-ductility biodegradable elastomeric
polymers such as poly (butylene-adipate–co–terephthalate) (PBAT), poly (butylene succinic
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acid) (PBS), poly (hydroxy alkanoate) (PHA), and polycaprolactone (PCL), success has
been limited because PLA and the other biodegradable polymers are immiscible [22–25].

Various compatibilizers reportedly have improved the miscibility of PLA blended
with other binary polymers [26–28]. Hexamethylene diisocyanate (HDI) reportedly reacts
with other polyesters by forming urethane bonds, thereby increasing the molecular weight
and improving the processability and physical properties of PLA [29,30]. HDI has been
used to modify the PLA physical properties by increasing the surface energies of PLA and
other biodegradable polymers to form a network of chemical bonds within an immiscible
binary structure [31,32], and the method can be used to efficiently combine binary or
ternary structure.

However, fossil-based biodegradable polymers such as PBAT and PBS have been
blended with PLA, thereby clearly decreasing the bio-based content or carbon footprint
of the resulting blends [33–35]. Kim et al. (2020) recently synthesized the random coblock
polyester poly (butylene-sebacate–co–terephthalate) (PBSeT) from bio-based sebacic acid,
and the resulting amorphous PBSeT showed a high elongation of over 1500% and high duc-
tility [36]. Therefore, blending PBSeT with PLA is expected to decrease the PLA brittleness
while preserving the decreased content of the biobased carbon content (BCC).

In this study, blends were developed by blending PLA and PBSeT with various HDI
contents to improve ductility of PLA, and the physical properties, thermal behavior, and
chemical structure of the blends were investigated. In addition, hydrolysis tests were
performed to determine the blend degradability.

2. Materials and Methods
2.1. Materials

Dimethyl terephthalate (DMT) was purchased from SK Chemicals Co., Ltd. (Seoul,
Korea). Sebacic acid (Se) and 1, 4-butanediol (BDO) were obtained from Daejung Chemicals
& Metals Co., Ltd. (Siheung, Korea). Titanium tetrabutoxide (TBT) was supplied by Merck
KGaA (Darmstadt, Germany) and was used as a catalyst for synthesizing. PLA (4032D)
was purchased from NatureWorks LLC (Minnetonka, MN, U.S.A) and it had molecular
weight (Mw) of 181,000 (g/mol) and dispersity of 1.89. HDI was obtained from Daejung
Chemicals & Metals Co., Ltd. (Siheung, Korea).

2.2. Synthesis of PBSeT and Blending

The PBSeT was synthesized using 60 mol% sebacic acid and 40 mol% DMT by es-
terification and subsequent polycondensation under vacuum in the range 200–240 ◦C,
according to the method described by Kim et al. (2020) [36], and the ratio (mol%) of BDO
to dicarboxylic acid was fixed at 1.25:1. The blend was blended using a high-viscosity
kneading machine (TEST ONE, Seoul, Korea) at 220 ◦C for 5 min. The predicted structures
of partial blend of the reactants, PBSeT, and blend was shown in Figure 1, and the chemi-
cal compositions of the PBSeT/PLA blends prepared with various HDI ratios are listed
in Table 1.
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Table 1. Chemical compositions of PLA/PBSeT blends prepared with various HDI ratios.

Specimen PLA% (w/w) PBSeT% (w/w) HDI (phr)

Control 80 20 0
HDI 0.1 80 20 0.1
HDI 0.3 80 20 0.3
HDI 0.75 80 20 0.75
HDI 1.0 80 20 1.0

2.3. Specimen Preparation

Specimens for mechanical testswere injected from an injection-molding machine
(GibaeEnT, Gyeonggi, Korea) at 210 ◦C and 40 MPa for 2 min, according to the ISO 527
standard. Therefore, the temperature of each polymer was set according to the polymer
appearance. The specimens for IR analysis and degradation test were hot-pressed (hot-
pressing machine, TEST ONE, Seoul, Korea) at 230 ◦C and 40 MPa for 3 min to a length,
width, and thickness of 3, 3, and 0.05 cm, respectively.

2.4. Fourier-Transform Infrared Analysis

The Fourier-transform infrared (FTIR) absorption spectra were recorded using an IFS
88-IR spectrometer (Bruker AXS GmbH, Karlsruhe, Germany) in the range 400–4000 cm−1

for all the specimens under ambient conditions. The spectral resolution was 2 cm−1, and
16 scans were averaged for each specimen.

2.5. Mechanical-Property Analysis

The room-temperature (RT) tensile strengths and elongations at break of blends
were measured using a universal testing machine (Qmesys, Seoul, Korea) operating at a
crosshead speed of 10 mm min−1. The test specimens were prepared using a dumbbell-
shaped mold manufactured as described in the ISO 527 standard. More than five samples
were measured for each polymer, and the mean and standard deviation were calculated.

The 3-point RT bending strengths of the specimens were analyzed using a universal
testing machine (Qmesys, Seoul, Korea) operating at a crosshead speed of 10 mm min−1,
according to the ASTM D790 testing method. More than five samples were measured for
each polymer, and the mean and standard deviation were calculated.

2.6. Gel-Permeation-Chromatography Analysis

The molecular weights (Mn and Mw) and dispersity of the melt-pressed starting mate-
rials were determined using a gel-permeation-chromatography (GPC) system equipped
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with a WatersTM Alliance 2690 high-performance liquid chromatography (HPLC) separa-
tions module, a WatersTM 484 tunable absorbance detector operating at 265 nm, an online
multiangle laser light scattering (MALLS) detector fitted with a 20-mW gallium-arsenide
laser operating at 690 nm (miniDAWN®, Wyatt Technology, Santa barbara, CA, USA),
an interferometric refractometer (Optilab®DSP, Wyatt Technology, Santa barbara, CA,
USA) operating at 35 ◦C and 690 nm, and two PLgels (Polymer Laboratories, Amherst,
MA, USA) MIXED E GPC columns (pore sizes: 50–103 Å; bead size: 3 µm) connected
in series. Tetrahydrofuran (THF) flowing at 1 mL min−1 was used as the mobile phase.
The specimen concentrations were approximately 5–10 mg mL−1 in 100 µL of freshly
injected distilled THF. The detector signals were recorded simultaneously, and the absolute
molecular weights and Ð were computed using ASTRA® 4.0 software (Wyatt Technology,
Santa barbara, CA, USA).

2.7. Hydrolytic Degradation Measurements

All the blend specimens with length, width, and thickness of 3, 3, and 0.05 cm,
respectively, were hydrolytically degraded at 37 ± 0.2 ◦C in a 0.1 N sodium hydroxide
(NaOH, pH 13) solution following the accelerated hydrolytic degradation method by Wang
et al. [37]. All the fractured blend specimens were carefully weighed before degradation and
then dipped into 200 mL NaOH solution to hydrolytically degrade with stirring for 6 days.
The degraded specimens were then removed, washed with fresh water, dried in chamber
containing a desiccant to completely remove any residual moisture, and reweighed. The
same procedure was repeated several times. The final degradation, F (wt.%), is given by
Equation (1) as follows:

F = [(W0 − W1)/W0] × 100, (1)

where W0 represents the initial weight (g) of the blend specimen before hydrolysis, and
W1 is the residual weight (g) of the specimen degraded. The hydrolytic degradation was
measured three times for each specimen, and the data closest to the average degradation
were reported.

2.8. Thermal-Property Analysis

Differential scanning calorimetry (DSC) measurements were performed using a DSC-
Q20 calorimeter (TA Instruments, Milford, MA, USA). The specimens were heated at
10 ◦C min−1 and scanned several times under nitrogen in the range from −30 to 230 ◦C.
The melting temperatures (Tm) were determined from the main peaks in the initial DSC
curves. The glass-transition temperatures (Tg) were calculated based on the midpoints of
the change in the heat capacity, as indicated in the DSC scans.

The copolyester specimens were maintained at 90 ◦C to remove any residual moisture
and then heated at 10 ◦C min−1 to 800 ◦C under nitrogen, and the thermal stabilities of
the specimens were studied using a TGA 4000 thermogravimetric analyzer (PerkinElmer,
Waltham, MA, USA).

The specimens were melted at 190 ◦C for 300 s with a melt-index flowmeter (WL1400,
WithLab, Seoul, Korea) and then pushed with a 2.16-kg bar for 60 s.

3. Results and Discussion
3.1. FTIR Analysis

The FTIR spectra of the neat PLA, control, and blends prepared with various HDI
contents are shown in Figure 2. A peak corresponding to the –CH3 of PLA at 2945 cm−1,
2996 cm−1 [38] and the –CH– of PLA at 2997 cm−1 (asym), 2946 cm−1 (sym), and 2881 cm−1

stretch [39]. The –CH2 of PBSeT was appeared at 2919 cm−1, 2851 cm−1 [36]. However, it
occurred nearby each other, so whole peaks were appeared in the range 2800–3000 cm−1 as
small round curves. In addition, the peaks at approximately 1700 and 1180 cm−1 correspond
to the carbonyl C=O and C–O vibrations, respectively [40–42]. In the spectra of both PBSeT
and PLA, peaks in the 1700 and 2800–2900 cm−1 regions correspond to the C=O bond and
aliphatic –CH2 stretching, respectively [43]. The spectrum of PBSeT mainly shows peaks in
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the 1200 and 1100 cm−1 regions corresponding to the asymmetric and symmetric stretching
of aromatic CO, respectively. In particular, the spectra of all the PBSeT/PLA blends showed
a peak in the 720 cm−1 region corresponding to the aromatic group, indicating that the
PBSeT and PLA had blended well [44]. With increasing HDI content, peaks corresponding
to –C=OO− were observed in the 1590 and 660 cm−1 regions. In particular, the peak at
1590 cm−1 (attributed to NH bending) indicates that the –N=C=O group had changed into
the –NH–C=OO− one [32,45]. In addition, a peak attributed to NH stretching appeared in
the region at approximately 3300 cm−1 when –N=C=O groups were bonded [32,46], and
the intensity of the peak at approximately 2300 cm−1 (corresponding to the HDI isocyanate
group) was very weak (i.e., 0.1). Furthermore, the spectrum for the HDI 0.3 blend specimen
clearly showed peaks attributed to the HDI isocyanate group [47], suggesting that the HDI
had reacted appropriately with the PBSeT and PLA.
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Figure 2. FTIR spectra of neat PLA, control, and blend specimens prepared with various HDI contents.

3.2. GPC Analysis

Table 2 and Figure 3 shows the GPC curves used to determine the Mw, Mn, and Ð of
the control and blends prepared with various HDI contents. The control and all the blend
specimens showed Mw values in the range ~160,000 to 170,000 g mol−1, lower than the
known Mw of PLA. In addition, PBSeT showed Mw and Mn of 154,900 and 64,600 g mol−1,
respectively. The control showed both the lowest Mw and Mn molecular weights of 114,000
and 45,400 g mol−1, respectively, which were remarkably lower than those of all the HDI
specimens, suggesting that the HDI had increased the molecular weights of the specimens.
The control and the HDI 0.1, 0.3, 0.75, and 1.0 specimens showed Mw molecular weights
of 114,000; 148,200; 152,000; 146,300; and 131,300 and Mn molecular weights of 45,400;
67,800; 57,100; 56,800; and 54,400 g mol−1, respectively. The HDI 0.3 specimen showed
the highest molecular weight and, therefore, high tensile strength and elongation in the
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tensile-property analysis. The results suggest that the physical properties of the blends
were improved by adding HDI. Moreover, the additional peaks in the FTIR spectra of the
HDI specimens suggest that the molecular weights increased owing to chemical bonding.

Table 2. Polymer molecular weight and dispersity (Mw/Mn) of PLA/PBSeT blends.

Unit Control HDI 0.1 HDI 0.3 HDI 0.75 HDI 1.0

Mw g/mol 114,000 148,200 152,000 146,300 131,300
Mn g/mol 45,400 67,800 57,100 56,800 54,400

Ð (Dispersity) Mw/Mn 2.5 2.1 2.6 2.5 2.4
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3.3. Tensile Strength and Elongation Properties

Figure 4 and Table 3 shows the tensile-strength characteristics and stress–strain curves
of the neat PLA, control, and blend specimens prepared with various HDI contents. Accord-
ing to previous research results, because PBSeT showed high elongation, it was expected to
remarkably affect the tensile properties of the highly brittle PLA [36]. The neat PLA and
simple-blend control specimens showed tensile strengths of approximately 93 and approxi-
mately 52 MPa, respectively. The results of the one-way analysis of variance (ANOVA) with
post-hoc Tukey honestly significant difference (HSD) showed a statistically significant dif-
ference between the tensile strengths of the control and PLA specimens. Furthermore, the
control and PLA specimens showed elongations of approximately 43 and approximately
23%, respectively. However, because the standard deviation of the control specimen was
relatively high in the significance validation, the difference between the elongations was
negligible. The tensile strengths of all the HDI specimens were significantly different from
that of the control specimen. However, among the HDI specimens, only the HDI 0.3 one
showed a significantly different tensile strength of 64 MPa.
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Table 3. Tensile strength and elongation at break PLA/PBSeT based blends with various HDI contents.

Control HDI 0.1 HDI 0.3 HDI 0.75 HDI 1.0 PLA

Tensile strength (MPa) 52.6 59.34 64.64 62.36 60.4 93.36
STDV 0.8 0.6 4.8 2.9 1.8 1.6

Elongation at break (%) 43.34 54.15 151.9 73.36 63.78 23.58
STDV 20.2 12.0 46.1 31.0 13.4 0.9
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The average tensile strengths of the neat PLA and HDI 0.1, 0.3, 0.75, and 1.0 specimens
were 52, 59, 64, 62, and 60 MPa, respectively. Although the average tensile strength of
the HDI 0.3 specimen was not significantly different from that of the HDI 0.75 one, it
was significantly different from those of all the other specimens. In addition, the HDI 0.3
specimen remarkably showed approximately 151% elongation, which was significantly
different from the elongations of all the other specimens. The neat PLA specimen showed
the lowest elongation as 23%, and the elongations of the control, HDI 0.1, 0.3, 0.75, and
1.0 specimens were 43, 54, 151, 73, and 63% of elongation, respectively. Therefore, al-
though adding HDI increased specimen elongation up to a point similar to the findings of
Kim et al. (2012) [48], adding more than 0.75 phr of HDI was an overdose, which decreased
the specimen elongation.

Interestingly, with increasing HDI content from 0.3 to 1.0 phr, the specimen elongation
and tensile strength both decreased, suggesting that 0.3 phr was the most appropriate
HDI content for increasing the tensile strength and elongation of the blend specimens.
Because HDI contents of 0.75 phr or higher caused binding reactions such as self- and
branch bonding, the HDI 0.75 and 1.0 specimens did not exhibit appropriately high tensile
strength or elongation, which may be why the HDI 0.75 and 1.0 specimens showed two
melting temperature (Tm) peaks in the DSC thermal analysis, as will be further discussed
in Section 3.5. Furthermore, such binding reactions may be why the HDI was not well
dispersed throughout the matrixes of the HDI 0.75 and 1.0 specimens and, thus, why suffi-
cient binding was not achieved. This finding means that when an appropriate amount of
modifier is added to the blend, many functional sites can react and be efficiently combined
with the modifier. However, it is expected that when a large amount of HDI is added, the
binding efficiency is lowered because the HDI cannot be combined with all the functional
sites, which had already reacted with each other.

Although the specimen strength and elongation both eventually increased owing to
HDI-induced bonding, the two materials were not completely bonded together. Although
HDI contents above 0.3 phr were excessive, the HDI is highly reactive and appeared to
react quickly wherein all the reaction sites reacted with each other. Therefore, additional
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investigations (wherein the screw combination and velocity and temperature are varied)
are required to elucidate the bonding mechanism and optimize the blending method.

Figure 4 was the stress–strain curves show that except for the neat PLA specimen, all
the HDI blend specimens showed improved strains owing to the high PBSeT stretchability.
However, some specimens showed necking, which is thought to occur past the PLA yield
point, owing to the PBSeT, and the average strains of the HDI blends were slightly different
depending on the HDI content.

Necking past the yield point and the phenomena leading to fracture are indicated by
the initial slope in the stress curve as steep as the slope the PLA tensile-strength curve before
the appearance of the PBSeT stretchability and ductility characteristics. The control, which
consisted of only PBSeT blended with PLA, showed improved average strain compared
with that of the neat PLA. Furthermore, adding HDI increased the average strains compared
with those of the neat PLA and control specimens. In particular, the HDI 0.3 specimen
showed the highest strain of approximately 150%.

3.4. Three-Point Flexural Strengths

Figure 5 and Table 4 shows the 3-point flexural strengths and moduli of the neat
PLA, control, and blend specimens prepared with various HDI contents. When PBSeT
was blended with neat PLA, the flexural strength decreased from approximately 150 (for
the neat PLA) to 95 MPa (for the blended control), suggesting that the relatively brittle
PLA was made more ductile by adding the elastomeric PBSeT. However, all the HDI
specimens showed higher flexural strengths than the control. Specifically, the HDI 0.1,
0.3, 0.75, and 1.0 specimens exhibited flexural strengths of 106, 108, 108, and 108 MPa,
respectively, which although were higher than that of the control, were not remarkably
different. However, the control and HDI 0.1, 0.3, 0.75, and 1.0 specimens showed yield
strengths of approximately 81, 88, 91, 95, and 95 MPa, respectively. Although the yield
strength increased with increasing HDI content, the yield strengths of the HDI 0.75 and
1.0 specimens were not remarkably different. The flexural strengths of all the HDI speci-
mens are similar despite the increased yield-point strength because the experiment was
conducted according to the ISO standard method of terminating the experiment when the
strain reached 5%. Although the maximum flexural strengths of the specimens appeared
similar up to a certain point, the yield-point strength slightly increased with increasing HDI
content. In particular, the flexural modulus of the HDI 0.1 specimen was approximately
7 GPa, which is higher than that (6.5 GPa) of the control specimen, indicating that the HDI
had increased the momentary modulus. However, the HDI 0.3, 0.75, and 1.0 specimens
showed flexural moduli of 6.4, 6.6, and 7.1 GPa, respectively, indicating that the flexural
modulus slightly decreased and then increased with increasing HDI content and that the
HDI 0.3 specimen showed the maximum elongation of approximately 150%. Although
the HDI 0.3 specimen showed a somewhat decreased flexural modulus, the yield-point
strength was not reached during a longer strain, suggesting that the HDI 0.3 specimen
could withstand strain without fracturing.

Table 4. Flexural properties (strength, modulus, and yield strength) of PLA/PBSeT based blends
with various HDI contents.

Control HDI 0.1 HDI 0.3 HDI 0.75 HDI 1.0 PLA

Flexural Strength (MPa) 95.3 106.7 108.7 108.9 108.9 151.6
Flexural Modulus (GPa) 6.5 7.0 6.4 6.6 7.1 11.4

Yield Strength (MPa) 81.5 88.3 91.4 95.0 95.4 127.5
F.S. STDV 5.7 3.0 2.6 4.1 2.7 4.2
F.M. STDV 0.1 0.1 0.5 0.5 0.1 0.8
Y.S. STDV 3.2 4.6 2.3 3.6 4.8 8.2



Materials 2021, 14, 197 10 of 16

Materials 2021, 14, x FOR PEER REVIEW  11  of  19 
 

 

Table 4. Flexural properties (strength, modulus, and yield strength) of PLA/PBSeT based blends 

with various HDI contents. 

  Control  HDI 0.1  HDI 0.3  HDI 0.75  HDI 1.0  PLA 

Flexural Strength 

(MPa) 
95.3  106.7  108.7  108.9  108.9  151.6 

Flexural Modulus 

(GPa) 
6.5  7.0  6.4  6.6  7.1  11.4 

Yield Strength 

(MPa) 
81.5  88.3  91.4  95.0  95.4  127.5 

F.S. STDV  5.7  3.0  2.6  4.1  2.7  4.2 

F.M. STDV  0.1  0.1  0.5  0.5  0.1  0.8 

Y.S. STDV  3.2  4.6  2.3  3.6  4.8  8.2 

Figure 5. Three‐point flexural strengths and moduli of neat PLA, control, and blend specimens prepared with various 

HDI contents. 

3.5. Thermal Properties 

The thermal properties of the control and blend specimens were investigated by DSC. 

The DSC curves of the specimens heated a second time (i.e., the “second heating curves”) 

were used to determine the melting points and characterize the thermal properties of the 

specimens because the second heating curves provide more‐accurate data independent of 

the thermal histories of the specimens. Figure 6 shows the DSC curves of the control and 

blend specimens prepared with various HDI contents, and Table 5 shows Tg,  the cold‐

crystallization temperature (Tcc), Tm, and the other thermal properties of the specimens. A 

peak corresponding to Tg appeared in the DSC curves of all the specimens, and the peak 

shifted depending on  the HDI  content of  the  specimen. The DSC  curve of  the  control 

showed a Tg peak at approximately 53 °C, which is slightly lower than the Tg previously 

known for neat PLA. The DSC curve of the control also showed a peak corresponding to 

Figure 5. Three-point flexural strengths and moduli of neat PLA, control, and blend specimens
prepared with various HDI contents.

3.5. Thermal Properties

The thermal properties of the control and blend specimens were investigated by DSC.
The DSC curves of the specimens heated a second time (i.e., the “second heating curves”)
were used to determine the melting points and characterize the thermal properties of the
specimens because the second heating curves provide more-accurate data independent
of the thermal histories of the specimens. Figure 6 shows the DSC curves of the control
and blend specimens prepared with various HDI contents, and Table 5 shows Tg, the cold-
crystallization temperature (Tcc), Tm, and the other thermal properties of the specimens.
A peak corresponding to Tg appeared in the DSC curves of all the specimens, and the
peak shifted depending on the HDI content of the specimen. The DSC curve of the control
showed a Tg peak at approximately 53 ◦C, which is slightly lower than the Tg previously
known for neat PLA. The DSC curve of the control also showed a peak corresponding
to Tcc at 87 ◦C, which is lower than the Tcc of the other specimens, indicating a fairly
low Tcc. It previously was thought that PBSeT affected the PLA crystallization rate and
that the PLA cold-crystallization heat capacity was 6.2 J g−1, which is lower than those
of the other specimens. However, in the current work, although the Tcc of the control
was 87 ◦C, the Tcc peak shifted to higher temperatures and the peak sizes increased with
increasing HDI content. For example, although the Tcc of the HDI 0.1 and 0.3 specimens
was approximately 105 ◦C, that of the HDI 0.75 and 1.0 ones increased to approximately
115 ◦C, which is associated with increased crystallinity and is thought to originate from the
increasing size and number of crystals with increasing HDI content. This finding suggests
that the HDI and PBSeT contents both affect the crystallization of the main PLA domain
because HDI and PBSeT both are almost amorphous and in particular, it suggests that the
HDI-centered crystal structure affects the PLA crystallization.
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Table 5. DSC data of the PLA/PBSeT blends with various HDI contents.

Control HDI 0.1 HDI 0.3 HDI 0.75 HDI 1.0 PLA

Tm (◦C) 163.3 164.5 163.3 159.9/167.1 159.9/167.1 166.1
∆Hf (J/g) 21.8 25.2 34.5 31.6 32.9 26.0

Tg (◦C) 53.4 54.6 53.9 58.2 58.0 59.1
Tcc (◦C) 87.9 105.7 105.9 115.4 115.5 -

∆Hcc (J/g) 6.4 16.8 28.4 29.3 23.4 -

The control and HDI 0.1, 0.3, 0.75, and 1.0 specimens, showed 7, 18, 30, 31, and
32% crystallinity, respectively. Although the crystallinity increased with increasing HDI
content and the crystallinity of the HDI 0.1 specimen did not increase significantly to 18%,
the crystallinity of the HDI 0.3 specimen did significantly increase to 30%. However, the
crystallinities of HDI 0.75 and 1.0 specimens were not significantly different.

The control specimen showed the lowest Tm of 163 ◦C, and a relaxation zone appeared
before Tm in the DSC second-heating curve of the control owing to insufficient PBSeT
and PLA mixing. However, the relaxation zone disappeared when HDI was added to the
specimens. The Tm of all the specimens were measured in the range ~163–167 ◦C and were
all slightly lower than the Tm previously known for neat PLA, except HDI 0.75 and 1.0
which showed two Tm peaks.

The DSC second-heating curves of the HDI 0.75 and 1.0 specimens showed similar
Tm peaks at 159 and 167 ◦C, respectively, unlike the curves of the other specimens. The Tm
measured for the neat PLA is affected by either changes in the PLA crystal shapes and sizes
owing to the addition of a nucleating agent or by the increasing thicknesses of external and
internal crystals. In this study, the Tm was affected by the formation of additional crystals
when HDI was added to the specimens.

The mechanical and physical properties of blends consisting of an amorphous poly-
mer (such as PBSeT) blended with a semicrystalline polymer (such as PLA) are greatly
affected by the crystallization kinetics, degree of crystallinity, and microstructure of each
of the individual blends in the same structure. The miscibility, properties, and internal
structural interactions of amorphous/semicrystalline blends greatly influence the crys-
tallinity and physical strength. Usually, the higher the polymer crystallinity is, the higher
the physical stiffness (i.e., elasticity modulus) and tensile strength are, which decrease
ductility. Although most of the specimens in this study followed that general rule, the
HDI 0.3 specimen showed drastically increased tensile strength and elongation.

Figure 7 shows the TGA curves of the control and blend specimens prepared with
various HDI contents. All the specimens were sufficiently dried before testing, and none of
them showed any weight loss at approximately 100 ◦C. All the specimens were pyrolyzed
above approximately 340 ◦C, and the TGA curves of all the specimens exhibited peaks
indicating two-stage decomposition because PLA and PBSeT show different decomposition
temperatures. Previously reported main decomposition temperature of PBSeT was around
400 ◦C [36].

However, the main peaks of all the HDI specimens were at decomposition tempera-
tures higher than that of the main peak of the control (PBSeT/PLA blend) specimen. That
is, the control specimen mainly decomposed at approximately 370 ◦C, while the HDI 0.1,
0.3, 0.75, and 1.0 specimens decomposed at 372, 371, 372, and 371 ◦C, respectively. The
decomposition and decomposition-onset temperatures of the HDI specimens were not
remarkably different from those of the control specimen, indicating that the HDI had only
slightly changed the heat resistance of the blends.
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3.6. Hydrolytic Degradation

PLA based blends previously have been hydrolyzed under accelerated conditions to
demonstrate its biodegradability. For example, Wang et al. studied PLA biodegradability
by hydrolyzing PLA–PBS blends in NaOH [37]. Furthermore, Heidarzadeh et al. reported
that PBSeT was biodegradable [43]. Therefore, because each of the individual polymer
components is biodegradable, the PLA/PBSeT blends are also expected to be biodegradable.
Moreover, the GPC data revealed that the molecular weights of all the HDI specimens
were higher than that of the HDI-free control. Table 6 represents the weight-loss-based
degradation ratios determined for the neat PLA and blend specimens prepared with
various HDI contents. The appearances of the corresponding films immersed in NaOH
solution at 0 and 6 days are shown in Figure 8. All film specimens were hydrolytically
degraded in NaOH. Interestingly, all the specimens except for the neat PLA showed at
least 65% degradation when immersed in NaOH solution at 37 ◦C for 6 days. The HDI-free
control specimen decomposed surprisingly quickly, showing over 90% decomposition at
144 h. Because the HDI increased the molecular weights and cross-linking of PLA/PBSeT
blends, all the HDI added specimens degraded slightly less than the control. These fast
hydrolytic degradation of PLA/PBSeT blends could be accelerated also by mechanical
stirring process. However, the neat PLA steadily degraded, showing approximately 10%
degradation after 144 h. The neat PLA, which is digestible in thermophile condition,
decomposed slower than expected. The PLA is main film matrix and PBSeT acts as the
dispersed component, where 20% PBSeT are degraded first in mesophilic temperature
(37 ◦C) causing the disintegration of film specimens. Despite the blended blends containing
80% PLA and only 20% PBSeT, they all showed highly accelerated decomposition. However,
it is particularly noteworthy that increasing the molecular weight of the blends did not
proportionally increase their degradability, indicating that the difference in molecular
weights was negligible in determining the rate and degree of blend decomposition.
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Table 6. Weight-loss-based degradation ratios determined for neat PLA, control, and blend specimens prepared with
various HDI contents all hydrolytically degraded in NaOH.

Time of Degradation

24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h 132 h 144 h

Weight loss (%)

Control 7.3 18.0 37.4 44.0 49.4 55.6 68.0 76.0 79.8 83.8 92.1
HDI 0.1 8.0 14.1 18.4 24.2 35.7 42.6 50.3 55.6 61.4 64.7 67.5
HDI 0.3 10.1 24.9 27.6 31.9 38.0 53.4 58.0 64.1 69.8 77.6 85.9
HDI 0.75 10.6 18.8 25.6 29.6 40.2 51.0 57.2 62.2 67.6 73.4 78.6
HDI 1.0 9.9 17.8 28.2 31.9 38.1 46.4 51.1 59.8 65.8 70.5 71.8

PLA 1.0 1.9 2.8 3.3 4.6 4.7 5.0 7.2 8.4 9.2 10.3
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solution at 0 and 6 days.

4. Conclusions

In this study, synthesized PBSeT and neat PLA were blended with various contents of
HDI (a crosslinking agent) to increase the blend miscibility, and the mechanical and chemi-
cal properties of the blends were investigated. All specimens degraded significantly faster
than the neat PLA specimen and showed high degradabilities of over 65%. In particular,
the HDI-free control specimen showed over 90% degradation. Because elastomeric PBSeT
showed very high elongation in previous studies, we utilized its viscoelastic characteristics
by combining PBSeT with PLA, and the resulting PBSeT–PLA blend showed elongation
higher than that of neat PLA. All the HDI blends showed tensile strengths and elongations
higher than those of the control. In particular, the HDI 0.3 specimen showed remarkably
high elongation and the highest tensile strength of all the specimens, suggesting that 0.3 phr
was the appropriate HDI content for optimizing the physical properties of PLA. The results
of this study suggest the use of the obtained blends in flexible packaging industry.
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