Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. X-ray Microscopy Setup
2.3. Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCD | Charged Coupled Device |
FWHM | Full Width Half Maximum |
SI | Supplementary Information |
XBIC | X-ray Beam-Induced Current |
XEOL | X-ray Excited Optical Luminescence |
XRF | X-ray Fluorescence |
References
- Philipps, S.; Warmuth, W. Fraunhofer ISE: Photovoltaics Report, Updated: 16 September 2020. 2020. Available online: https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (accessed on 24 December 2020).
- Kowsar, A.; Rahaman, M.; Islam, S.; Imam, A.Y.; Debnath, S.C.; Sultana, M.; Hoque, A.; Sharmin, A.; Mahmood, Z.H.; Farhad, S.F.U. Progress in Major Thin-film Solar Cells: Growth Technologies, Layer Materials and Efficiencies. Int. J. Renew. Energy Res. 2019, 9, 579–597. [Google Scholar]
- Siebentritt, S. What limits the efficiency of chalcopyrite solar cells? Sol. Energy Mater. Sol. Cells 2011, 95, 1471–1476. [Google Scholar] [CrossRef]
- Abou-Ras, D.; Schmidt, S.S.; Schäfer, N.; Kavalakkatt, J.; Rissom, T.; Unold, T.; Mainz, R.; Weber, A.; Kirchartz, T.; Simsek Sanli, E.; et al. Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells—A review. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 363–375. [Google Scholar] [CrossRef]
- Raghuwanshi, M.; Thöner, B.; Soni, P.; Wuttig, M.; Wuerz, R.; Cojocaru-Mirédin, O. Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure. ACS Appl. Mater. Interfaces 2018, 10, 14759–14766. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Lee, J.; Lee, K.B.; Kim, D.; Lee, Y. Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques. J. Anal. Methods Chem. 2018, 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Garud, S.; Bokalič, M.; Trinh, C.; Rech, B.; Amkreutz, D.; Topič, M. Analysis of Surface Passivation and Laser Firing on Thin-Film Silicon Solar Cells Via Light-Beam Induced Current. IEEE J. Photovolt. 2020, 10, 1246–1253. [Google Scholar] [CrossRef]
- Ramírez Quiroz, C.O.; Dion-Bertrand, L.I.; Barbec, C.J.; Müller, J.; Orgassa, K. Deciphering the Origins of P1-Induced Power Losses in Cu(Inx,Ga1−x)Se2 (CIGS) Modules Through Hyperspectral Luminescence. Engineering 2020, 6, 1395–1402. [Google Scholar] [CrossRef]
- Gelb, J.; Stripe, B.; Yang, X.; Lewis, S.; Lau, S.; Yun, W. Mapping Subsurface Composition with Attogram Sensitivity using Micro-XRF. Microsc. Microanal. 2018, 24, 1058–1059. [Google Scholar] [CrossRef] [Green Version]
- West, B.; Stuckelberger, M.; Jeffries, A.; Gangam, S.; Lai, B.; Stripe, B.; Maser, J.; Rose, V.; Vogt, S.; Bertoni, M.I. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study. J. Synchrotron Radiat. 2017, 24, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Bouet, N.; Zhou, J.; Huang, X.; Nazaretski, E.; Xu, W.; Cocco, A.P.; Chiu, W.K.S.; Brinkman, K.S.; Chu, Y.S. Multimodal hard X-ray imaging with resolution approaching 10 nm for studies in material science. Nano Future 2018, 2, 011001. [Google Scholar] [CrossRef]
- West, B.; Stuckelberger, M.; Guthrey, H.; Chen, L.; Lai, B.; Maser, J.; Rose, V.; Shafarman, W.; Al-Jassim, M.; Bertoni, M.I. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells. Nano Energy 2017, 32, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Stuckelberger, M.; West, B.; Nietzold, T.; Lai, B.; Maser, J.M.; Rose, V.; Bertoni, M.I. Review: Engineering solar cells based on correlative X-ray microscopy. J. Mater. Res. 2017, 32, 1825–1854. [Google Scholar] [CrossRef]
- Plass, C.T.; Ritzer, M.; Schöppe, P.; Schönherr, S.; Zapf, M.; Hafermann, M.; Johannes, A.; Martínez-Criado, G.; Segura-Ruiz, J.; Würz, R.; et al. In-Operando Nanoscale X-ray Analysis Revealing the Local Electrical Properties of Rubidium-Enriched Grain Boundaries in Cu(In,Ga)Se2 Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 57117–57123. [Google Scholar] [CrossRef]
- Ulvestad, A.; Hruszkewycz, S.O.; Holt, M.V.; Hill, M.O.; Calvo-Almazán, I.; Maddali, S.; Huang, X.; Yan, H.; Nazaretski, E.; Chu, Y.S.; et al. Multimodal X-ray imaging of grain-level properties and performance in a polycrystalline solar cell. J. Synchrotron Radiat. 2019, 26, 1316–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Luo, Y.; Holt, M.V.; Cai, Z.; Fenning, D.P. Residual nanoscale strain in cesium lead bromide perovskite reduces stability and shifts local luminescence. Chem. Mater. 2019, 31, 2778–2785. [Google Scholar] [CrossRef]
- Calvo-Almazán, I.; Ulvestad, A.P.; Colegrove, E.; Ablekim, T.; Holt, M.V.; Hill, M.O.; Maddali, S.; Lauhon, L.J.; Bertoni, M.I.; Huang, X.; et al. Strain Mapping of CdTe Grains in Photovoltaic Devices. IEEE J. Photovolt. 2019, 9, 1790–1799. [Google Scholar] [CrossRef]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. (Eds.) Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ziska, C.; Ossig, C.; Pyrlik, N.; Carron, R.; Avancini, E.; Fevola, G.; Kolditz, A.; Siebels, J.; Kipp, T.; Cai, Z.; et al. Quantifying the elemental distribution in solar cells from X-ray fluorescence measurements with multiple detector modules. In Proceedings of the IEEE 47th Photovoltaic Specialists Conference, 15 June–21 August 2020. Virtual conference. [Google Scholar]
- Stuckelberger, M.E.; Nietzold, T.; West, B.M.; Luo, Y.; Li, X.; Werner, J.; Niesen, B.; Ballif, C.; Rose, V.; Fenning, D.P.; et al. Effects of X-rays on perovskite solar cells. J. Phys. Chem. C 2020, 124, 17949–17956. [Google Scholar] [CrossRef]
- Vyvenko, O.F.; Buonassisi, T.; Istratov, A.A.; Hieslmair, H.; Thompson, A.C.; Schindler, R.; Weber, E.R. X-ray beam induced current—A synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon. J. Appl. Phys. 2002, 91, 3614–3617. [Google Scholar] [CrossRef] [Green Version]
- Hieslmair, H.; Istratov, A.A.; Sachdeva, R.; Weber, E.R. New synchrotron-radiation based technique to study localized defects in silicon: “EBIC” with X-ray excitation. In Proceedings of the 10th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Copper Mountain, CO, USA, 14–16 August 2010; pp. 162–165. [Google Scholar]
- Ossig, C.; Nietzold, T.; West, B.M.; Bertoni, M.I.; Falkenberg, G.; Schroer, C.G.; Stuckelberger, M.E. X-ray beam induced current measurements for multi-modal X-ray microscopy of solar cells. J. Vis. Exp. 2019, 20, e60001. [Google Scholar] [CrossRef]
- Emura, S.; Moriga, T.; Takizawa, J.; Nomura, M.; Bauchspiess, K.R.; Murata, T.; Harada, K.; Maeda, H. Optical-luminescence yield spectra produced by X-ray excitation. Phys. Rev. B 1993, 47, 6918–6930. [Google Scholar] [CrossRef]
- Taylor, R.; Finch, A.; Mosselmans, J.; Quinn, P. The development of a XEOL and TR XEOL detection system for the I18 microfocus beamline Diamond light source. J. Lumin. 2013, 134, 49–58. [Google Scholar] [CrossRef]
- Rodenburg, J.M. Ptychography and Related Diffractive Imaging Methods. Adv. Imaging Electron Phys. 2008, 150, 87–184. [Google Scholar]
- Pfeiffer, F. X-ray ptychography. Nat. Photonics 2018, 12, 9–17. [Google Scholar] [CrossRef]
- Diaz, A.; Trtik, P.; Guizar-Sicairos, M.; Menzel, A.; Thibault, P.; Bunk, O. Quantitative X-ray phase nanotomography. Phys. Rev. B 2012, 85, 020104. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.H.; Zambelli, J.; Bevins, N.; Qi, Z.; Li, K. X-ray phase sensitive imaging methods: Basic physical principles and potential medical applications. Curr. Med Imaging Rev. 2010, 6, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Wellenreuther, G.; Falkenberg, G.; Schroer, C.G. Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes. Appl. Phys. Lett. 2012, 100, 253112. [Google Scholar] [CrossRef] [Green Version]
- Carron, R.; Nishiwaki, S.; Feurer, T.; Hertwig, R.; Avancini, E.; Löckinger, J.; Yang, S.C.; Buecheler, S.; Tiwari, A.N. Advanced Alkali Treatments for High-Efficient Cu(In,Ga)Se2 Solar Cells on Flexible Substrates. Adv. Energy Mater. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stierle, A.; Keller, T.F.; Noei, H.; Vonk, V.; Roehlsberger, R. DESY NanoLab. J. Large-Scale Res. Facil. JLSRF 2016, 2, A76. [Google Scholar] [CrossRef] [Green Version]
- Schroer, C.G.; Boye, P.; Feldkamp, J.M.; Patommel, J.; Samberg, D.; Schropp, A.; Schwab, A.; Stephan, S.; Falkenberg, G.; Wellenreuther, G.; et al. Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl. Instrum. Methods Phys. Res. A 2010, 616, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Seiboth, F.; Wittwer, F.; Scholz, M.; Kahnt, M.; Seyrich, M.; Schropp, A.; Wagner, U.; Rau, C.; Garrevoet, J.; Falkenberg, G.; et al. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses. J. Synchrotron Radiat. 2018, 25, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Schropp, A.; Döhrmann, R.; Botta, S.; Brückner, D.; Kahnt, M.; Lyubomirskiy, M.; Ossig, C.; Scholz, M.; Seyrich, M.; Wiljes, P.; et al. PtyNAMi: Ptychographic Nano-Analytical Microscope. J. Appl. Crystallogr. 2020, 53, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Schroer, C.G.; Seyrich, M.; Schropp, A.; Döhrmann, R.; Botta, S.; Wiljes, P.; Brückner, D.; Kahnt, M.; Wittwer, F.; Grote, L.; et al. Ptychographic Nano-Analytical Microscope (PtyNAMi) at PETRA III: Signal-to-background optimization for imaging with high sensitivity. In X-ray Nanoimaging: Instruments and Methods IV; Lai, B., Somogyi, A., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2019; Volume 11112, pp. 42–50. [Google Scholar] [CrossRef] [Green Version]
- Solé, V.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B 2007, 62, 63–68. [Google Scholar] [CrossRef]
- de Boer, D.K.G. Calculation of X-ray Fluorescence Intensities from Bulk and Multilayer Samples. X-ray Spectrom. 1990, 19, 145–154. [Google Scholar] [CrossRef]
- Heginbotham, A.; Solé, V.A. CHARMed PyMca, Part I: A Protocol for Improved Interlaboratory Reproducibility in the Quantitative ED-XRF Analysis of Copper Alloys. Archaeometry 2017, 49, 714–730. [Google Scholar] [CrossRef] [Green Version]
- Ziska, C. Analysis of Synchrotron-Based X-ray Fluorescence Measurements from mUltiple Detector Modules. Bachelor’s Thesis, Universität Hamburg, Hamburg, Germany, 2020. [Google Scholar]
- Stuckelberger, M.; Nietzold, T.; Hall, G.N.; West, B.; Werner, J.; Niesen, B.; Ballif, C.; Rose, V.; Fenning, D.P.; Bertoni, M.I. Charge collection in hybrid perovskite solar cells: Relation to the nanoscale elemental distribution. IEEE J. Photovoltaics 2017, 7, 590–597. [Google Scholar] [CrossRef]
- Schroer, C.G.; Agapov, I.; Brefeld, W.; Brinkmann, R.; Chae, Y.C.; Chao, H.C.; Eriksson, M.; Keil, J.; Nuel Gavaldà, X.; Röhlsberger, R.; et al. PETRA IV: The ultralow-emittance source project at DESY. J. Synchrotron Radiat. 2018, 25, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Evangelidis, G.D.; Psarakis, E.Z. Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization. IEEE Comput. Soc. 2008, 30, 1–8. [Google Scholar] [CrossRef] [Green Version]
- OpenCV. Open Source Computer Vision Library. 2015. Available online: https://opencv.org (accessed on 19 June 2020).
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 2016, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Siebentritt, S.; Avancini, E.; Bär, M.; Bombsch, J.; Bourgeois, E.; Buecheler, S.; Carron, R.; Castro, C.; Duguay, S.; Félix, R.; et al. Heavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface versus Bulk Effects. Adv. Energy Mater. 2020, 10, 1903752. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Barlow, R.J. Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences; The Manchester Physics Series; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Stuckelberger, M.; Nietzold, T.; West, B.M.; Walker, T.; Ossig, C.; Wittwer, F.; Deng, J.; Maser, J.M.; Lai, B.; Cai, Z.; et al. Challenges and opportunities with highly brilliant X-ray sources for multi-modal in-situ and operando characterization of solar cells. Microsc. Microanal. 2018, 24 (Suppl. 2), 434–435. [Google Scholar] [CrossRef] [Green Version]
- Cojocaru-Mirédin, O.; Choi, P.P.; Abou-Ras, D.; Schmidt, S.S.; Caballero, R.; Raabe, D. Characterization of Grain Boundaries in Cu(In,Ga)Se2 Films Using Atom-Probe Tomography. IEEE J. Photovolt. 2011, 1, 207–212. [Google Scholar] [CrossRef]
- Avancini, E.; Keller, D.; Carron, R.; Arroyo-Rojas Dasilva, Y.; Erni, R.; Priebe, A.; Di Napoli, S.; Carrisi, M.; Sozzi, G.; Menozzi, R.; et al. Voids and compositional inhomogeneities in Cu(In,Ga)Se2 thin films: Evolution during growth and impact on solar cell performance. Sci. Technol. Adv. Mater. 2018, 19, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöppe, P.; Schönherr, S.; Wuerz, R.; Wisniewski, W.; Martínez-Criado, G.; Ritzer, M.; Ritter, K.; Ronning, C.; Schnohr, C.S. Rubidium segregation at random grain boundaries in Cu(In,Ga)Se2 absorbers. Nano Energy 2017, 42, 307–313. [Google Scholar] [CrossRef]
- Vilalta-Clemente, A.; Raghuwanshi, M.; Duguay, S.; Castro, C.; Cadel, E.; Pareige, P.; Jackson, P.; Wuerz, R.; Hariskos, D.; Witte, W. Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells. Appl. Phys. Lett. 2018, 112, 103105. [Google Scholar] [CrossRef] [Green Version]
- Wuerz, R.; Hempel, W.; Jackson, P. Diffusion of Rb in polycristalline Cu(In,Ga)Se2 layers and effect of Rb on solar cell parameters of Cu(In,Ga)Se2 thin-film solar cells. J. Appl. Phys. 2018, 124, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovolt. Res. Appl. 2012, 20, 472–476. [Google Scholar] [CrossRef]
- Stuckelberger, M.E. Multimodal scanning X-ray microscopy at nanoprobe endstations of fourth-generation synchrotrons. Spectroscopy 2019, 34, 42–44. [Google Scholar]
- Stuckelberger, M.E.; Nietzold, T.; West, B.M.; Farshchi, R.; Poplavskyy, D.; Bailey, J.; Lai, B.; Maser, J.M.; Bertoni, M.I. Defect activation and annihilation in CIGS solar cells: An operando X-ray microscopy study. J. Phys. Energy 2020, 2, 025001. [Google Scholar] [CrossRef]
- Longo, A.; Sahle, C.J.; Glatzel, P.; Giacobbe, C.; Rack, A.; Mathon, O.; Lomachenko, K.A.; Segura-Ruiz, J.; Villanova, J.; Castillo-Michel, H.; et al. Energy and Environmental Science at ESRF. Synchrotron Radiat. News 2020, 33, 40–51. [Google Scholar] [CrossRef]
- Hettel, R. The Advanced Photon Source Upgrade Plan Approved. Synchrotron Radiat. News 2019, 32, 34–35. [Google Scholar] [CrossRef]
- Tavares, P.F.; Al-Dmour, E.; Andersson, Å.; Cullinan, F.; Jensen, B.N.; Olsson, D.; Olsson, D.K.; Sjöström, M.; Tarawneh, H.; Thorin, S.; et al. Commissioning and first-year operational results of the MAX IV 3 GeV ring. J. Synchrotron Radiat. 2018, 25, 1291–1316. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ossig, C.; Strelow, C.; Flügge, J.; Kolditz, A.; Siebels, J.; Garrevoet, J.; Spiers, K.; Seyrich, M.; Brückner, D.; Pyrlik, N.; et al. Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell. Materials 2021, 14, 228. https://doi.org/10.3390/ma14010228
Ossig C, Strelow C, Flügge J, Kolditz A, Siebels J, Garrevoet J, Spiers K, Seyrich M, Brückner D, Pyrlik N, et al. Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell. Materials. 2021; 14(1):228. https://doi.org/10.3390/ma14010228
Chicago/Turabian StyleOssig, Christina, Christian Strelow, Jan Flügge, Andreas Kolditz, Jan Siebels, Jan Garrevoet, Kathryn Spiers, Martin Seyrich, Dennis Brückner, Niklas Pyrlik, and et al. 2021. "Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell" Materials 14, no. 1: 228. https://doi.org/10.3390/ma14010228
APA StyleOssig, C., Strelow, C., Flügge, J., Kolditz, A., Siebels, J., Garrevoet, J., Spiers, K., Seyrich, M., Brückner, D., Pyrlik, N., Hagemann, J., Seiboth, F., Schropp, A., Carron, R., Falkenberg, G., Mews, A., Schroer, C. G., Kipp, T., & Stuckelberger, M. E. (2021). Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell. Materials, 14(1), 228. https://doi.org/10.3390/ma14010228