Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Program
3. Numerical Model
3.1. Discrete Element Method Description in PFC2D and the Clump Method
3.2. Simulation Procedure
4. Results and Discussions
4.1. Shear Stress and Shearing Time
4.2. Shear Stress and Shear Velocity
4.3. Shear Stress and Normal Stress
4.4. Particle Crushing Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okada, Y.; Sassa, K.; Fukuoka, H. Undrained Shear Behavior of Sands Subjected to Large Shear Displacement and Estimation of Excess Pore-Pressure Generation from Drained Ring Shear Tests. Can. Geotech. J. 2005, 42, 787–803. [Google Scholar] [CrossRef]
- Sassa, K.; Fukuoka, H.; Wang, G.; Ishikawa, N. Undrained Dynamic-Loading Ring-Shear Apparatus and Its Application to Landslide Dynamics. Landslides 2004, 1, 7–19. [Google Scholar] [CrossRef]
- Wang, G.; Suemine, A.; Schulz, W.H. Shear-Rate-Dependent Strength Control on the Dynamics of Rainfall-Triggered Landslides, Tokushima Prefacture, Japan. Earth Surf. Process. Landf. 2010, 35, 407–416. [Google Scholar]
- Fukuoka, H.; Sassa, K.; Wang, G. Influence of Shear Speed and Normal Stress on the Shear Behavior and Shear Zone Structure of Granular Materials in Naturally Drained Ring Shear Tests. Landslides 2007, 4, 63–74. [Google Scholar] [CrossRef]
- Li, D.; Yin, K.; Glade, T.; Leo, C. Effect of Over-Consolidation and Shear Rate on the Residual Strength of Soils of Silty Sand in the Three Gorges Reservoir. Sci. Rep. 2017, 7, 5503. [Google Scholar] [CrossRef] [Green Version]
- Bagherzadeh-Khalkhali, A.; Mirghasemi, A.A. Numerical and Experimental Direct Shear Tests for Coarse-Grained Soils. Particuology 2009, 7, 83–91. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Dulundu, K.; Tuncay, K. Strength of Various Sands in Triaxial and Cyclic Direct Shear Tests. Eng. Geol. 2013, 156, 92–102. [Google Scholar] [CrossRef]
- Cresswell, A.W.; Powrie, W. Triaxial Tests on an Unbonded Locked Sand. Géotechnique 2004, 54, 107–115. [Google Scholar] [CrossRef]
- Feda, J. Notes on the Effect of Grain Crushing on the Granular Soil Behavior. Eng. Geol. 2002, 63, 93–98. [Google Scholar] [CrossRef]
- Edincliler, A.; Cabalar, A.F.; Cagatay, A.; Cevik, A. Triaxial Compression Behavior of Sand–Tire Wastes Using Neural Networks. Neural Comput. Appl. 2012, 21, 441–452. [Google Scholar] [CrossRef]
- Charles, J.A.; Watts, K.S. The Influence of Confining Pressure on the Shear Strength of Compacted Rockfill. Géotechnique 1980, 30, 353–367. [Google Scholar] [CrossRef]
- Tika, T.E.; Vaughan, P.R.; Lemos, L.J.L.J. Fast shearing of pre-existing shear zones in soil. Géotechnique 1996, 2, 197–233. [Google Scholar] [CrossRef]
- Iverson, N.R.; Mann, J.E.; Iverson, R.M. Effect of Soil Aggregates on Debris-Flow Mobilization: Results from Ring-Shear Experiments. Eng. Geol. 2010, 114, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.W.; Park, S.S. Effect of the Surface Roughness on the Shear Strength of Granular Materials in Ring Shear Tests. Appl. Sci. 2019, 9, 2977. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.W.; Park, S.S.; Fukuoka, H. Shear and Viscous Characteristics of Gravels in Ring Shear Tests. Geosci. J. 2018, 22, 11–17. [Google Scholar] [CrossRef]
- Wang, S.; Luna, R.; Zhao, H. Cyclic and Post-cyclic Shear Behavior of Low-Plasticity Silt with Varying Clay Content. Soil Dyn. Earthq. Eng. 2015, 75, 112–120. [Google Scholar] [CrossRef]
- Jensen, R.P.; Bosscher, P.J.; Plesha, M.E.; Edil, T.B. DEM Simulation of Granular Media-Structure Interface: Effects of Surface Roughness and Particle Shape. Int. J. Numer. Anal. Methods Geomech. 1999, 23, 531–547. [Google Scholar] [CrossRef]
- Sadrekarimi, A.; Olson, S.M. A New Ring Shear Device to Measure the Large Displacement Shearing Behavior of Sands. Geotech. Test. J. 2009, 12, 197–208. [Google Scholar]
- Lobo-Guerrero, S.; Vallejo, L.E. Modeling Granular Crushing in Ring Shear Tests: Experimental and Numerical Analyses. Soils Found. 2006, 46, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Itasca Consulting Group Inc. PFC-Particle Flow Code, Ver. 4.00; Itasca: Minneapolis, MN, USA, 2008. [Google Scholar]
- Jeong, S.W.; Park, S.S.; Fukuoka, H. Shear Behavior of Waste Materials in Drained and Undrained Ring Shear Tests. Geosci. J. 2014, 18, 459–468. [Google Scholar] [CrossRef]
- Jeong, S.W. Geotechnical and Rheological Characteristics of Waste Rock Deposits Influencing Potential Debris Flow Occurrence at the Aban-Doned Imgi Mine, Korea. Environ. Earth Sci. 2015, 73, 8299–8310. [Google Scholar] [CrossRef]
- Jeong, S.W.; Wu, Y.H.; Cho, Y.C.; Ji, S.W. Flow Behavior and Mobility of Contaminated Waste Rock Materials in the Abandoned Imgi Mine in Korea. Geomorphology 2018, 301, 79–91. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Cundall, P.A. Formulation of a Three-Dimensional Distinct Element Method-Part I. a Scheme to Detect and Represent Contacts in a System Composed of Many Polyhedral Blocks. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 1988, 25, 107–116. [Google Scholar] [CrossRef]
- Hart, R.; Cundall, P.A.; Lemos, J. Formulation of a Three-Dimensional Distinct Element Method-Part II. Mechanical Calculations for Motion and Interaction of a System Composed of Many Polyhedral Blocks. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 1988, 25, 117–125. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. UDEC. Universal Distinct Element Code, Version 4.0; Itasca: Minneapolis, MN, USA, 2004. [Google Scholar]
- Nguyen, D.H.; Azema, E.; Sornay, P.; Radjai, F. Rheology of Granular Materials Composed of Crushable Particles. Eur. Phys. J.E. 2018, 41, 50. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Azema, E.; Sornay, P.; Radjai, F. Bonded-Cell Model for Particle Fracture. Phys. Rev. 2015, 91, 022203. [Google Scholar]
- Artoni, R.; Neveu, A.; Descantes, Y.; Richard, P. Effect of Contact Location on the Crushing Strength of Aggregates. J. Mech. Phys. Solids. 2019, 122, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, H.; Sassa, K.; Wang, G.; Sasaki, R. Observation of Shear Zone Development in Ring-Shear Apparatus with a Transparent Shear Box. Landslides 2006, 3, 239–251. [Google Scholar] [CrossRef]
- Trent, B.C.; Margolin, L.G. A Numerical Laboratory for Granular Solids. Eng. Comput. 1992, 9, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Einav, I. Breakage Mechanics—Part I: Theory. J. Mech. Phys. Solids. 2007, 55, 1274–1297. [Google Scholar] [CrossRef]
- Park, S.S.; Jeong, S.W.; Yoon, J.H.; Chae, B.G. Ring Shear Characteristics of Two Different Soils. J. Korean Geotech. Soc. 2013, 5, 39–52. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Tsoungui, O.; Vallet, D.; Charmet, J. Numerical Model of Crushing of Grains inside Two-Dimensional Granular Materials. Powder Technol. 1999, 105, 190–198. [Google Scholar] [CrossRef]
Specific Gravity | Water Content (%) | Total Unit Weight (t/m3) | Dry Unit Weight (t/m3) | Liquid Limit (%) | Porosity (%) | USCS |
---|---|---|---|---|---|---|
2.63 | 6.9 | 1.7 | 1.59 | 24.5 | 39.5 | SM |
Test Condition | Velocity (mm/s) | Normal Stress (kPa) |
---|---|---|
Drained | 0.01 0.1 1 100 | 20 |
40 | ||
60 | ||
Undrained | 80 | |
100 | ||
150 |
Clump Particle | Cementing Material (Parallel Bond) |
---|---|
Bulk density 1700 kg/m3 Rmax/Rmin 1 = 5.0 Modulus of elasticity = 6.1 MPa Normal to shear stiffness ratio = 2.5 Friction coefficient = 0.5 | Bond-radius = 1 Modulus of elasticity = 6.1 MPa Normal to shear stiffness ratio = 2.5 Normal strength = Shear strength = mean ± std.dev = 162 ± 37 MPa |
NS25–τp | NS25–τr | NS100–τp | NS100–τr | |
---|---|---|---|---|
Drained | τ = 12.8∙V0.14 | τ = 10.3∙V0.14 | τ = 29.5∙V0.17 | τ = 17.3∙V0.21 |
Undrained | τ = 19.1∙V0.18 | τ = 12.1∙V0.21 | τ = 23.3∙V0.17 | τ = 16.2∙V0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-W.; Kighuta, K.; Lee, D.-E.; Park, S.-S. Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D. Materials 2021, 14, 229. https://doi.org/10.3390/ma14010229
Jeong S-W, Kighuta K, Lee D-E, Park S-S. Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D. Materials. 2021; 14(1):229. https://doi.org/10.3390/ma14010229
Chicago/Turabian StyleJeong, Sueng-Won, Kabuyaya Kighuta, Dong-Eun Lee, and Sung-Sik Park. 2021. "Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D" Materials 14, no. 1: 229. https://doi.org/10.3390/ma14010229
APA StyleJeong, S. -W., Kighuta, K., Lee, D. -E., & Park, S. -S. (2021). Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D. Materials, 14(1), 229. https://doi.org/10.3390/ma14010229