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Abstract: This work deals with investigative methods used for evaluation of the surface quality of
selected metallic materials’ cutting plane that was created by CO2 and fiber laser machining. The
surface quality expressed by Rz and Ra roughness parameters is examined depending on the sample
material and the machining technology. The next part deals with the use of neural networks in
the evaluation of measured data. In the last part, the measured data were statistically evaluated.
Based on the conclusions of this analysis, the possibilities of using neural networks to determine
the material of a given sample while knowing the roughness parameters were evaluated. The main
goal of the presented paper is to demonstrate a solution capable of finding characteristic roughness
values for heterogeneous surfaces. These surfaces are common in scientific as well as technical
practice, and measuring their quality is challenging. This difficulty lies mainly in the fact that it is
not possible to express their quality by a single statistical parameter. Thus, this paper’s main aim
is to demonstrate solutions using the cluster analysis methods and the hidden layer, solving the
problem of discriminant and dividing the heterogeneous surface into individual zones that have
characteristic parameters.

Keywords: surface quality; metallic materials; statistical analysis of measured data; perceptron

1. Introduction

The surface quality of the solid material determines and expresses both the grade of
the workpiece and the product. Wood and stone products already require a certain level of
surface quality for further use. Requirements on it are intensified with the development of
metallurgy, especially in the production of cutting tools for daily use, e.g., knives, swords,
sickles, scythes, and tools. However, in the production of these types of tools, the evaluation
of the surface by sight or touch has been sufficient [1].

Machining methods have also been evolving, ranging from downright primitive to
the traditional methods used to date, along with methods for classifying surface quality
determination [1,2]. The roughness began to be prescribed in the blueprint and was
given by standards that became documents approving the rules of product reproducibility.
The “measurement” of surface roughness by sight and touch was no longer sufficient
because it could not be measured accurately and precisely enough. With the advent of new
technologies and modern measuring instruments, it was possible to measure the surface
roughness and determine its parameters more accurately [1,2]. These technical possibilities
were reflected in the standardization process [2].

The methods of surface quality evaluation prescribed by the standards and the re-
peatability of the production process have led to the idea that it is possible to determine
the type of material to be machined under the conditions of repeatability of the measured
roughness parameters. The subject of this work was to verify this idea [3,4].

The need for standardization of parts, products, and processes in industrial production
is almost as old as industrial production itself. However, as globalization increases, the
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importance of interchangeability and substitutability within the supplier–customer chain
increases. Setting up rules for assessing different products or production processes is the
main goal of the International Organization for Standardization. Standardization in surface
quality assessment is mainly dealt with in ISO 4287 and ISO 4288 [2].

Therefore, the article’s aim, considering the previous introduction, is to independently
evaluate the surfaces that have arisen as a result of applying a water jet and laser beam
to the aforementioned surfaces [5]. Due to the energy loss during the passage, when the
cutting is carried out, the quality of the cut surface changes, which can be described by the
roughness or waviness parameters, both in 2D and 3D [2].

Therefore, it is clear that this is a classical discriminatory task that methods of discrim-
ination or cluster analysis can solve. However, in this case, the main responsibility for the
solution is transferred from the metrologist to the statistician, which may be convenient for
scientific but not practical application [6].

Normally, this problem is solved by evaluation of only the Ra parameter. Unfortu-
nately, it has been confirmed several times that the parameter Ra itself is not sufficiently
indicative of the surface quality. Therefore, the amplitude parameters Rz and the hybrid
parameter Rmr(c) were added to the neural network [7].

The novelty of this article lies in the possibility of comparing the roughness of surfaces
created by two different machining methods by using a neural network. The surface quality
expressed by Rz and Ra’s roughness parameters is examined depending on the sample
material and the machining technology that was used [1,2]. The next part deals with the
use of neural networks to evaluate measured data. In the last part, the measured data were
statistically evaluated [2,8]. Based on the conclusions of this analysis, the possibilities of
using neural networks to determine the material of a given sample with known roughness
parameters were evaluated [8].

The suitability of using the perceptron neural networks with one hidden layer for
this exact purpose will be described in the article. The suitability of using the perceptron
neural networks with one hidden layer for this exact purpose will be described in the
article. By creating a suitable file containing learning information for the neural network
and finding a suitable number of neurons in a hidden layer, it is possible to apply it to
solve the discriminatory task and, more precisely, find individual parameters [9,10].

2. Materials and Methods
2.1. Studied Materials and Their Machining

Three types of materials were used for the measurements, namely structural steel
1.0038- S235JRC + N (sample 235), abrasion-resistant stainless steel HARDOX 450 (sample
HARDOX), and stainless steel 1.0043-X5CrNi18-10 (sample 1_430).

Information data about the machining methods, machining process, and machining
conditions of the samples can be seen in Table 1. Then, Table 2 shows the abbreviations
that are used in the article to identify the sample.

2.2. Surface Quality

During machining, surface irregularities arise due to the production technology. The
quality of the surface and the associated roughness directly depend on the modifying
method. To make surfaces comparable in quality, ISO 4287, ISO 4288, ISO 25178, and other
norms define a number of parameters that can be used in other to quantify the surface of
an observed sample [11].
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Table 1. The laser settings during sample production.

Machining
Type

Material
Type

Material
Thickness

[mm]

Cutting
Gas

Gas Pres.
[Bar]

Cutting Jet
Diam.
[mm]

Focal
Length
[mm]

Cutting Speed
[mm min−1]

Power
[W]

Fiber laser 1.0038 6 Oxygen 0.73 1.2 4.4 2600 3080

Fiber laser 1.0038 8 Oxygen 0.5 1.2 4 1700 3050

Fiber laser Hardox 6 Oxygen 0.73 1.2 4.4 1300 3080

Fiber laser Hardox 8 Oxygen 0.5 1.2 4 900 3050

Fiber laser 1.4301 6 Nitrogen 17 2.5 −5.7 2100 3080

Fiber laser 1.4301 8 Nitrogen 19.3 2.5 −7.3 1200 3080

CO2 laser 1.0038 6 Oxygen 0.7 1 0.7 2700 4000

CO2 laser 1.0038 8 Oxygen 0.4 1.5 1.5 2100 4000

CO2 laser Hardox 6 Oxygen 0.7 1 0.7 2700 4000

CO2 laser Hardox 8 Oxygen 0.4 1.5 1.5 2100 4000

CO2 laser 1.4301 6 Nitrogen 13 2 −6.5 1350 4000

CO2 laser 1.4301 8 Nitrogen 14 2.5 −9 1000 4000

Table 2. Marking of measured samples.

Indication Pattern

F_1_430 steel 1.0043 Fiber laser machining

CO2_1_430 laser-treated CO2 steel 1.0043

F_235 steel 1.0038 Fiber laser machining

CO2_235 laser-treated CO2 steel 1.0038

F_HARDOX steel HARDOX 450 Fiber laser machining

CO2_HARDOX laser-treated CO2 steel HARDOX 450

This article presents parameters concerning surface roughness, i.e., R parameters,
which were measured by Talysurf CLI 500 profilometer (Taylor & Hobson, Leicester, United
Kingdom). These parameters include Ra—Arithmetical mean of height and Rz—Maximum
height of profile. Furthermore, one hybrid parameter, Rmr (c)—Load length ratio of profile
curve elements to the evaluation length at cut level c (% or µm), was used [1,5].

Before the roughness was measured on a Talysurf profilometer, the machined-surface
areas were checked on a Leica optical microscope with a magnification of 50×. This control
is necessary for the prevention of errors in the measurement itself. ISO 4287 clearly specifies
that surface damage cannot be assessed.

The measurement was performed under laboratory measurement conditions (temper-
ature: 22 ◦C, atmospheric pressure: 1045 hPa) on a Talysurf CLI 500 profilometer (Figure 1).
From three materials and two types of machining, six samples were produced. For each
sample, 160 cuts were done on the X-axis and 280 on the Y-axis. The disproportion in the
performed cuts is given by ISO 4277, where the main emphasis is placed on the X-axis as
the central axis.

The following scanning parameters on the Talysurf CLI 500 profilometer were set:
intensity reflection in the range of 85–95% (stabilization of the Z-axis), measurement speed
50 µm/s, and measurement spacing 5 µm on X and Y axes. Figure 1 shows the Talysurf
profilometer with the marked measuring area.
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Figure 1. Profilometer Talysurf CLI 500.

2.3. Statistical Tools for Data Evaluation

On a theoretical level, surface quality is assessed by using a parameter that is given by
ISO 4287 and ISO 25178 standards, and conclusions are drawn from statistical tests and
analyses. These tests are standard statistical hypothesis tests, based on the assumption that
the data from the scanned surface show a normal distribution and can be neglected [8,12].
Furthermore, the effect of systematic errors is not considered. Therefore, data analy-
sis is carried out first to determine the type of distribution, deviations, skewness, and
sharpness. The arithmetic mean and variance are mainly evaluated for parameters of the
dataset [13,14].

2.4. Data Classification

In assessing the measurement data from a plurality of samples, data must be split
into several subsets according to specific criteria. This identifies groups that show some
similarity [8,12]. The division of data into groups is a part of the “statistical learning”
discipline, where, based on a set of so-called training data, a prediction model is established.
This allows a prediction of the output value with a certain probability. Further described is
the use of neural networks to precisely determine the resulting values based on the input
measurement data and cluster analysis method [9,12].

Clustering is one of the multidimensional data analysis techniques nowadays fre-
quently used in artificial intelligence. The basic idea of the method is to divide the measured
data into clusters, so the items from one cluster have “more similar” properties than oth-
ers [1,14]. Furthermore, this approach is based on the evaluation of measured parameters
(Ra, Rz, and Rmr) of samples’ surfaces (F_1_430, F_235, HARDOX) that were machined by
laser technology CO2 and fiber [6,8].
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For this distribution, the approach by Ward that is capable of finding the nearest
clusters by optimizing distances of individual clusters was used. The optimization is based
on finding the correlation coefficients that are linear scale distances [8,15].

The correlation coefficient used in the article expresses the mutual linear relationship
between two quantities describing the quality of a surface. Then, the degree of correlation is
expressed by the Pearson correlation coefficient, which can take values in the closed interval
ranging from −1 to +1. A value close to +1 (−1) means that the linear relationship between
two quantities is “very probable”. Using cluster analysis, it is possible to demonstrate that
two (or more) clusters are “more probable” than the others [8,15].

2.5. Mathematical Model of the Neuron

In principle, the neuron is a unit that performs the representation of Euclidean space
on real numbers {R}n –> R. This means that it converts n inputs to which weights are
assigned to one output function value. The neuron output is a value Υ; which is a function;
designated as:

ξ =
n

∑
i=1

xi·wi − θ (1)

where ξ is the intrinsic potential of a neuron. This function is calculated when the sum
of the product value input xi × wi exceeds a predetermined value θ called the threshold.
Figure 2 shows the principle of a neuron [3,4,13].
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Figure 2. Basic principle of neuron.

The transfer function can be divided into two categories. It is either a leap, i.e., the
value of the output changes abruptly when the threshold is exceeded, or analogue, i.e., the
continuous transfer function generates the output value. The jump function is only used
for the output layer when binary output is required. For other layers, analogy functions
are used [4,11].

One neuron itself can perform only the most basic operations. On the contrary, a
structure of neurons can perform complex decision-making operations. These structures
are known as neural networks. Thus, a neural network is an oriented graph with input,
output, hidden nodes, and rated edges representing the signal flow [1,2].

Separate neurons are located in individual nodes. Nodes, their deployment, and
interconnections are critical aspects of the network architecture. Input nodes mostly only
distribute incoming data to all the first hidden layer’s neurons. Furthermore, the network
may consist of several hidden layers designed to perform the desired operations as a whole.
The output layer acts mainly as a network output interface [5,6,13].
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3. Results and Discussion
3.1. Materials

The material was machined on a CO2 laser and a Fiber laser. Figure 3 shows an
example of machining samples of material 1.4301 by machining (A) with a CO2 laser, and
Figure 3B shows the preparation of samples with a fiber laser.
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Figure 3. Material cut 1.4301 (A), CO2 laser, (B) Fiber laser.

3.2. Evaluation of Surface Roughness

As described above, the samples were cut by two types of lasers. First, it was necessary to
check the surface on a microscope for defects that prevented a correct roughness assessment.

Figure 4 shows a section of material 1.0038 (6 mm and 8 mm thickness) machined by
the fiber laser and CO2 laser. As is evident from the figure, the CO2 machining left a more
apparent mark, while the surface of the sample cut with the fiber laser was smoother.
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Figure 4. Material cuts 1.0038: (A) 6 mm fiber laser, (B) 8 mm fiber laser, (C) 6 mm CO2 laser,
(D) 8 mm CO2 laser.

Figure 5 shows a section of material 1.4301 (6 mm and 8 mm thickness) machined by
the fiber laser and CO2 laser. The general roughness of sections displayed on this figure
is higher than on the previous one. Nevertheless, the surface left by the fiber laser is still
smoother than the surface left by the CO2 laser. In addition, Figure 5D shows the evidence
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of the material being melted during the cutting procedure, which could be caused by the
higher concentration of nickel in this material.
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Figure 5. Material cuts 1.4301: (A) 6 mm fiber laser, (B) 8 mm fiber laser, (C) 6 mm CO2 laser,
(D) 8 mm CO2 laser.

Figure 6 shows a section of material Hardox 450 (6 mm and 8 mm thickness) machined
by the fiber laser and CO2 laser. While the previous two materials had a smoother section
surface after being cut by a fiber laser, an opposite trend was observed in samples prepared
from HARDOX 450. This might have been caused by the high abrasion resistance of
this material.

Figure 7 graphically compares the surfaces of material 1.0038. Figure 7A shows a
section of material (6 mm thickness) machined by the fiber laser. Figure 7B shows a section
of material (8 mm thickness) machined by the fiber laser, too. Figure 7C shows a section
of material (6 mm thickness) machined by the CO2 laser. Figure 7D shows a section of
material (8 mm thickness) machined by the CO2 laser, too. All surfaces are characterized by
triple parameters (Ra, Rz, Rmr) that change with the varying measuring position. Examples
of measured triplets can be found in Table 5.
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Figure 7. Comparison of 3D scenes of materials 1.0038 section surfaces profilometer.

Figure 8 graphically compares the surfaces of material 1.4301. Figure 8A shows a
section of material (6 mm thickness) machined by the fiber laser. Figure 8B shows a section
of material (8 mm thickness) machined by the fiber laser. Figure 8C shows a section
of material (6 mm thickness) machined by the CO2 laser. Figure 8D shows a section of
material (8 mm thickness) machined by the CO2 laser. All surfaces are characterized by
triple parameters (Ra, Rz, Rmr) that change with the varying measuring position. Examples
of measured triplets can be found in Table 5.



Materials 2021, 14, 2620 9 of 16

Materials 2021, 14, 2620 8 of 16 
 

 

Figure 7 graphically compares the surfaces of material 1.0038. Figure 7A shows a 
section of material (6 mm thickness) machined by the fiber laser. Figure 7B shows a sec-
tion of material (8 mm thickness) machined by the fiber laser, too. Figure 7C shows a 
section of material (6 mm thickness) machined by the CO2 laser. Figure 7D shows a sec-
tion of material (8 mm thickness) machined by the CO2 laser, too. All surfaces are char-
acterized by triple parameters (Ra, Rz, Rmr) that change with the varying measuring 
position. Examples of measured triplets can be found in Table 5. 

 
Figure 7. Comparison of 3D scenes of materials 1.0038 section surfaces profilometer. 

Figure 8 graphically compares the surfaces of material 1.4301. Figure 8A shows a 
section of material (6 mm thickness) machined by the fiber laser. Figure 8B shows a sec-
tion of material (8 mm thickness) machined by the fiber laser. Figure 8C shows a section 
of material (6 mm thickness) machined by the CO2 laser. Figure 8D shows a section of 
material (8 mm thickness) machined by the CO2 laser. All surfaces are characterized by 
triple parameters (Ra, Rz, Rmr) that change with the varying measuring position. Exam-
ples of measured triplets can be found in Table 5. 

 
Figure 8. Comparison of 3D scenes of materials 1.4301 section surfaces profilometer. 

Figure 9 graphically compares the surfaces of material Hardox 450. Figure 9A shows 
a section of material (6 mm thickness) machined by the fiber laser. Figure 9B shows a 
section of material (8 mm thickness) machined by the fiber laser. Figure 9C shows a sec-
tion of material (6 mm thickness) machined by the CO2 laser. Figure 9D shows a section 
of material (8 mm thickness) machined by the CO2 laser. All surfaces are characterized by 

Figure 8. Comparison of 3D scenes of materials 1.4301 section surfaces profilometer.

Figure 9 graphically compares the surfaces of material Hardox 450. Figure 9A shows
a section of material (6 mm thickness) machined by the fiber laser. Figure 9B shows a
section of material (8 mm thickness) machined by the fiber laser. Figure 9C shows a section
of material (6 mm thickness) machined by the CO2 laser. Figure 9D shows a section of
material (8 mm thickness) machined by the CO2 laser. All surfaces are characterized by
triple parameters (Ra, Rz, Rmr) that change with the varying measuring position. Examples
of measured triplets can be found in Table 5.
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As shown by the figures presented above, the quality of the surfaces of individual
materials machined by individual types of lasers is highly variable. In practice, this
variability is called a heterogeneous surface. These surfaces are characterized by the fact
that the above parameters Ra, Rz, and Rmr show considerable variance. Therefore, it
is quite difficult to use classical statistical methods for their recognition and subsequent
classification. Therefore, a cluster analysis capturing the similarity of the above-mentioned
heterogeneous surfaces seems to be a suitable method.

3.3. Statistical Evaluation

The first step of the statistical evaluation of the measured parameters Ra and Rz
of the surfaces of materials 1.0038, 1.4301, and Hardox 450, machined with fiber laser
and CO2 laser technology, was to perform the Anderson Darling test of normality at the
confidence level of 95%. A two-way Grubs test followed this to rule out the possibility of
data infiltration by gross errors.
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Figure 10 shows the graphs clearly showing that Ra and Rz variances depend on the
used machining technology and the material itself.
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For this reason, cluster analysis was applied to demonstrate the similarity of materials
and technologies. However, it seems to be much more appropriate for the classification
process to use a neural network, which will perform its classification separately after proper
“learning” (see Figure 11).
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3.4. Classification of Evaluated Data and Cluster Analysis

This data analysis step was designed to determine if the data showed any similarity
and, if so, to describe this similarity in detail [15]. Since the possibility of determining the
material used by the measured roughness parameters was examined, only samples pro-
cessed with the same technology were compared. For the actual analysis, the recommended
Ward’s method was used for the formation of clusters [16].
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As shown by the dendrograms in Figures 12 and 13, three different sheets of steel,
namely 1.0043, 1.0038, and Hardox 450, having a heterogeneous surface resulting from
their cutting by two types of lasers, namely a fiber and CO2 laser, were considered [17].
The purpose was to find a mutual similarity in terms of discriminant surfaces using the
amplitude parameters Ra and Rz. Then, this similarity was numerically expressed using
the Pearson correlation coefficient; see Tables 3 and 4. As expected, F Hardox steel exhibited
maximum dissimilarity across clusters [18].
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Table 3. Similarity levels of fiber laser-treated samples.

Cluster F_1_430 F_235 F_HARDOX

Similarity Levels [%] Similarity Levels [%]

Rz 67.3 −1.05

Ra 71.5 −9.3

Table 4. Similarity levels of laser-treated samples CO2.

Cluster CO2_1_430 CO2_235 CO2_HARDOX

Similarity Levels [%] Similarity Levels [%]

Rz 59.8 88.7

Ra 52.4 91.6
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However, the same task is, as it is demonstrated below, was solved more accurately
using a single hidden layer neural network where there is no limitation of the linearity
given by the Pearson correlation coefficient [19]. Moreover, the amplitude parameters
cannot capture the heterogeneous surface property; therefore, it is necessary to add another
hybrid parameter (in the sense of ISO 4287), namely Rmr(c), to the inputs of the searched
and subsequently tune the neural network [1,6].

In Tables 3 and 4, the levels of similarity of fiber and CO2 laser-treated samples using
Pearson’s correlation coefficient are shown:

This method does not recognize the difference in the cluster of steels 1.0043 and 1.0038
well, so it is necessary to add another discriminatory parameter, the hybrid parameter Rmr
(Figure 14).
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3.5. Neuron Network

Tests have shown that the two materials always have roughness parameters similar
to those for which it is not possible to determine a material with sufficient reliability only
based on the measured Rz and Ra values. Therefore, the next decision was to consider
determining parameter Rmr according to the ISO 4288 norm. For the determination
of similarity, we designed a neural network using an adaptation algorithm with one
hidden layer.

Software Statistica 14.0 was used to build the neural network. First, the number of
neurons in the hidden layer was estimated according to the formula: [1,2]

NNH = (n1 + n2) (2)

where:

NNH is the number of neurons in the hidden layer
n1 is the number of neurons in the input layer
n2 is the number of neurons in the output layer

Equation determines the number of neurons in the hidden layer by default [1,2].
To prove the correct functionality of the learned neural network, 30 samples machined

with the described technologies were selected. For these samples, the three parameters
Rz, Ra, and Rmr were measured in any position. These parameters are entered at the
input of the demonstrated neural network, which performed its classification process and
calculated the probability of this classification.

From Table 5, it can be concluded that the probability of most classifications exceeds
90% for materials machined with fiber laser. In the case of materials machined with a CO2
laser, the triple scattering values result in a lower value of the probability of classification;
however, in most cases, it exceeds 60%, which can be considered satisfactory. Should this
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probability need to be increased, further learning of the neural network would need to
be continued.

Table 5. Proof of the functionality of the proposed neural network solving the classification problem.

Fiber Laser CO2 Laser

Rz [µm] Ra [µm] Rmr Recognized % Rz [µm] Ra [µm] Rmr Recognized %

20.30 4.80 0.60 F_1_430 0.99850 13.40 2.60 0.62 CO2_1_430 0.6122

18.50 4.60 1.80 F_1_430 0.99980 11.30 2.50 1.80 CO2_1_430 0.8978

20.32 4.70 1.20 F_1_430 0.99850 11.90 2,52 1,86 CO2_1_430 0,7229

20,98 4,78 2,40 F_1_430 0,99820 11,70 2,54 1,24 CO2_1_430 0,5873

19,40 4,48 3,10 F_1_430 0,99820 12,40 2,40 1,20 CO2_1_430 0.8348

20.40 4.90 1.80 F_1_430 0.99900 11.60 2.10 0.60 CO2_1_430 0.8873

19.20 5.00 2.40 F_1_430 0.99930 10.70 2.12 0.62 CO2_1_430 0.6611

21.80 5.20 1.80 F_1_430 0.99910 11.40 2.62 1.80 CO2_1_430 0.4669

22.27 5.60 0.60 F_1_430 0.99940 11.20 2.43 0.62 CO2_1_430 0.5175

21.20 5.20 1.20 F_1_430 0.99920 11.60 2.30 0.62 CO2_1_430 0.7579

7.50 1.40 3.70 F_235 0.99998 8.70 1.40 1.80 CO2_235 0.4242

6.80 1.30 3.70 F_235 0.99998 5.00 1.20 13.60 CO2_235 0.9849

6.70 1.26 1.20 F_235 0.99940 7.30 1.44 4.30 CO2_235 0.9134

6.60 1.41 1.24 F_235 0.99270 6.20 1.10 3.70 CO2_235 0.9307

6.20 1.25 0.60 F_235 0.99880 7.50 1.40 3.10 CO2_235 0.8222

7.20 1.31 1.86 F_235 0.99970 6.70 1.30 3.00 CO2_235 0.9085

5.90 1.20 8.07 F_235 1.00000 6.00 1.10 3.70 CO2_235 0.9419

6.00 1.42 3.10 F_235 0.95950 6.60 1.20 0.60 CO2_235 0.9165

7.20 1.49 1.20 F_235 0.98950 7.10 1.18 2.50 CO2_235 0.8538

6.95 1.41 0.60 F_235 0.99640 6.30 1.22 8.00 CO2_235 0.9607

13.30 2.60 0.62 F_HARDOX 0.88750 16.60 3.70 1.80 CO2_HARDOX 0.6329

11.20 2.50 1.86 F_HARDOX 0.99999 14.10 3.50 1.20 CO2_HARDOX 0.9273

11.90 2.52 1.80 F_HARDOX 0.99940 15.10 3.60 1.80 CO2_HARDOX 0.9074

11.80 2.54 1.24 F_HARDOX 0.99900 15.00 3.70 0.62 CO2_HARDOX 0.9745

12.40 2.41 1.24 F_HARDOX 0.86100 14.44 3.60 1.10 CO2_HARDOX 0.9728

11.40 2.10 0.62 F_HARDOX 0.87560 14.80 3.50 1.80 CO2_HARDOX 0.7229

10.80 2.12 0.62 F_HARDOX 0.99880 14.60 3.55 1.24 CO2_HARDOX 0.8973

11.50 2.62 1.80 F_HARDOX 0.99970 14.20 3.70 0.60 CO2_HARDOX 0.9937

11.29 2.40 0.60 F_HARDOX 0.99880 15.00 3.50 4.30 CO2_HARDOX 0.8853

11.64 2.30 0.62 F_HARDOX 0.99870 13.30 3.40 3.70 CO2_HARDOX 0.9415

For each type of machining technology used, a neural network was constructed and
tested on a training dataset. This set contained 753 ordered triplets [Rz; Ra; Rmr], which
were the measured values of these roughness parameters on all samples machined in the
same way. Then, these triplets were inserted at the input of the appropriate neural network,
which performed its recognition of the type of material and laser machining technology. The
neural network was debugged in the environment of Statistica 14.0 software, specifically in
the neural network part.

In order to use this neural network without software Statistica 14.0, C ++ source code
was generated using the scales, and the neural networks were further tested with a free Dev
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C ++ development environment. Based on this theoretical estimate, the neural network
would look as suggested in Figure 15.
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Both neural networks recognized the material correctly, even though the CO2 laser
sample evaluation neural network showed a lower probability of a correct decision due to
a lower level of learning. Hence, a higher error formula value was lying on the error plane.

Based on measurements of individual heterogeneous surfaces of sample materials
defined in Table 5 machined with two types of lasers, a database containing 753 arranged
triplets, specifically a pair of amplitude parameters Ra and Rz and one hybrid Rmr param-
eter, was manually created.

This was used to teach the creation of a three-input neural network and with one hid-
den layer. The optimum number has been optimized by the number 6, which comes from
Figure 15 and constitutes the best solution for discrimination, and it is also the network’s
output. The result of such discriminant is the specification of the cutting technology on the
sample material in any scanned cut of the heterogeneous surface.

As shown in Tables 3 and 4, the probability of distinguishing the cutting technology
from the sample material and the sensing position is rarely below the probability of 85%
recognition for the fiber laser and all types of unknown sample materials.

In the case of a CO2 laser, the situation is more complicated. The probability of
recognition may decrease to 50% for measured unknown samples, which is extreme. In
general, samples cut by fiber laser technology have a much higher probability of correct
recognition than samples cut by CO2 laser, which is mainly due to the different typology of
cutting [9,10].
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4. Conclusions

The main idea of this work was to show the use of the measured values of roughness
parameters to determine the sample material using artificial intelligence elements. First, Rz,
Ra, and Rmr parameter values were acquired for each sample using the Talysurf CLI500
3D scanner. The measured data were first analyzed by Minitab version 18. It was verified
whether the data contained outliers or whether gross measurement errors influenced them
in several steps. After that, the sets of values of Rz and Ra’s parameters were analyzed
for a statistically significant influence on the material or technology used. In all cases, the
influence of the material and the machining technology applied was found to be statistically
significant. In the next step, data were sorted by similarity criteria using cluster analysis.
Since the two sets of data always shown high similarity, it turned out that using only the
parameters Rz and Ra in combination with standard statistical analysis procedures was
not sufficient to determine the sample material. Therefore, for each laser type, Statistica
14.0 generated a perceptron neural network with one hidden layer, which evaluated the
measured values of the parameters as mentioned above together with the values of the
parameter Rmr, which was used as an additional criterion in the determination of the
sample. Then, these networks were tested on a test dataset, and in all cases, the material
was correctly recognized by the network.

In general, the fiber laser sample network showed higher reliability than the CO2 laser
sample network. The highest reliability was recorded for fiber laser-treated steel 1.0043
and the lowest was recorded for CO2 laser-treated steel 1.0043.

When comparing the results contained in this article, it can be stated that the evaluation
of heterogeneous surfaces of samples based on the parameters of ISO 4287 and ISO 25178
standards cannot be done well without using discriminatory statistical methods.

However, even today’s commonly used cluster analysis in this assessment may fail or
give distorted and inexact results if clustering is based on Pearson coefficients, as described
in the article and the relevant tables.

Unambiguously, the best but not the most uncomplicated method seems to be the use
of artificial intelligence elements, namely the classical three-input neural network, with one
hidden layer containing six neurons, performing its solution to the discriminatory problem
in cutting technology and sample material having a heterogeneous surface.

In the case of high-quality sorted data containing triples of amplitude and hybrid
parameters, the so-called learning of the found neural network, as described in the article,
can be realized according to the triplets describing the character of heterogeneous surfaces
in arbitrary sections. As shown from the results table, a well-learned neural network, one
with minimized error function, can indicate a low probability of discriminant in various
cutting technologies and complicated heterogeneous surfaces.

Then, it depends on whether it is possible to create separate networks for individual
technologies, which is understandably more likely to be discriminatory, but at the expense
of significantly complicating the solution or a universal network, as demonstrated in
this article.
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