Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Master Model Preparation
2.2. CAD/CAM Design
2.3. Replica Technique
2.4. Statistical Analysis
3. Results
3.1. Performance of the Systems
3.2. Gap Size According to Tooth Type
3.3. Gap Size According to Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- De Almeida, I.G.; Antunes, D.B.; Braun, N.X.; Restani, A.; Straioto, F.G.; Galhano, G.A. CAD/CAM system influence marginal fit of different ceramic types? Indian J. Dent. Res. 2019, 30, 127–129. [Google Scholar]
- Holloway, J.A.; Miller, R.B. The effect of core translucency on the aesthetics of all-ceramic restorations. PPAD 1997, 9, 567–574. [Google Scholar]
- Al-Aali, K.A.; Bin-Shuwaish, M.S.; Alhenaki, A.M.; Al Ahdal, K.; Al-Deeb, L.; Maawadh, A.M.; Alhelal, A.; Al-Shehri, H.; Vohra, F.; Abduljabbar, T. Influence of milling systems and marginal configurations on the fit of yttrium stabilized tetragonal zirconia polycrystals (Y-TZP)’ copings. J. Appl. Biomater. Funct. Mater. 2020, 18. [Google Scholar] [CrossRef]
- Al-Aali, K.A.; Alhamdan, R.S.; Maawadh, A.M.; Vohra, F.; Abduljabbar, T. Influence of contemporary CAD-CAM milling systems on the fit and adaptation of partially stabilized Zirconia fixed partial dentures. Pak. J. Med Sci. 2021, 37, 45–51. [Google Scholar] [CrossRef]
- Allahkarami, M.; Hanan, J.C. Mapping the tetragonal to monoclinic phase transformation in zirconia core dental crowns. Dent. Mater. 2011, 27, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef]
- Mormann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [Google Scholar] [CrossRef]
- Tanveer, W.; Ridwan-Pramana, A.; Molinero-Mourelle, P.; Koolstra, J.H.; Forouzanfar, T. Systematic Review of Clinical Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Nasal Prostheses. Int. J. Environ. Res. Public Health 2021, 18, 3756. [Google Scholar] [CrossRef]
- Lee, S.J.; Jamjoom, F.Z.; Le, T.; Radics, A.; Gallucci, G.O. A clinical study comparing digital scanning and conventional impression making for implant-supported prostheses: A crossover clinical trial. J. Prosthet. Dent. 2021, 15. S0022-3913(21)00028-7. [Google Scholar]
- Knechtle, N.; Wiedemeier, D.; Mehl, A.; Ender, A. Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study. J. Prosthet. Dent. 2021, 18. S0022-3913(21)00019-6. [Google Scholar] [CrossRef]
- Batak, B.; Cakmak, G.; Seidt, J.; Yilmaz, B. Load to failure of high-density polymers for implant-supported fixed, cantilevered prostheses with titanium bases. Int. J. Prosthodont. 2021. [Google Scholar] [CrossRef]
- Mormann, W.H.; Curilović, Z. CEREC(R) CAD-CAM ceramic restorations. A case report after 5 years in place. Acta Stomatol. Croat. 1991, 25, 3–10. [Google Scholar]
- Bindl, A.; Mörmann, W.H. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J. Oral Rehabil. 2005, 32, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Neumeier, P.; Naumann, M. Marginal fit of 14-unit zirconia fixed dental prosthesis retainers. J. Oral Rehabil. 2009, 36, 142–149. [Google Scholar] [CrossRef]
- Korkut, L.; Cotert, H.S.; Kurtulmus, H. Marginal, Internal Fit and Microleakage of Zirconia Infrastructures: An In-Vitro Study. Oper. Dent. 2011, 36, 72–79. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.; Swain, M. Fit of zirconia fixed partial denture: A systematic review. J. Oral Rehabil. 2010, 37, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Aggstaller, H.; Richter, J.; Edelhoff, D.; Gernet, W. Influence of preparation angle on marginal and internal fit of CAD/CAM-fabricated zirconia crown copings. Quintessence Int. 2009, 40, 243–250. [Google Scholar]
- Beuer, F.; Naumann, M.; Gernet, W.; Sorensen, J.A. Precision of fit: Zirconia three-unit fixed dental prostheses. Clin. Oral Investig. 2009, 13, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Bindl, A.; Mormann, W.H. Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int. J. Periodontics Restor. Dent. 2007, 27, 567–575. [Google Scholar]
- Reich, S.; Wichmann, M.; Nkenke, E.; Proeschel, P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur. J. Oral Sci. 2005, 113, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.D.; Johnson, G.H.; Bales, D.J. Marginal adaptation of castable ceramic crowns. J. Prosthet. Dent. 1991, 66, 747–753. [Google Scholar] [CrossRef]
- Sulaiman, F.; Chai, J.; Jameson, L.M.; Wozniak, W.T. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int. J. Prosthodont. 1997, 10, 478–484. [Google Scholar] [PubMed]
- Karlsson, S. The fit of Procera titanium crowns: An in vitro and clinical study. Acta Odontol. Scand. 1993, 51, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Belser, U.; MacEntee, M.; Richter, W. Fit of three porcelain-fused-to-metal marginal designs in vivo: A scanning electron microscope study. J. Prosthet. Dent. 1985, 53, 24–29. [Google Scholar] [CrossRef]
- May, K.B.; Russell, M.M.; Razzoog, M.E.; Lang, B.R. Precision of fit: The Procera AllCeram crown. J. Prosthet. Dent. 1998, 80, 394–404. [Google Scholar] [CrossRef]
- Vigolo, P.; Fonzi, F. An In Vitro Evaluation of Fit of Zirconium-Oxide-Based Ceramic Four-Unit Fixed Partial Dentures, Generated with Three Different CAD/CAM Systems, before and after Porcelain Firing Cycles and after Glaze Cycles. J. Prosthodont. 2008, 17, 621–626. [Google Scholar] [CrossRef]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Kokubo, Y.; Tsumita, M.; Kano, T.; Sakurai, S.; Fukushima, S. Clinical marginal and internal gaps of zirconia all-ceramic crowns. J. Prosthodont. Res. 2011, 55, 40–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boening, K.W.; Wolf, B.H.; Schmidt, A.E.; Kästner, K.; Walter, M.H. Clinical fit of Procera AllCeram crowns. J. Prosthet. Dent. 2000, 84, 419–424. [Google Scholar] [CrossRef]
- Biscaro, L.; Bonfiglioli, R.; Soattin, M.; Vigolo, P. An In Vivo Evaluation of Fit of Zirconium-Oxide Based Ceramic Single Crowns, Generated with Two CAD/CAM Systems, in Comparison to Metal Ceramic Single Crowns. J. Prosthodont. 2013, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Rinke, S.; Fornefett, D.; Gersdorff, N.; Lange, K.; Roediger, M. Multifactorial analysis of the impact of different manufacturing processes on the marginal fit of zirconia copings. Dent. Mater. J. 2012, 31, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuer, F.; Korczynski, N.; Rezac, A.; Naumann, M.; Gernet, W.; Sorensen, J.A. Marginal and internal fit of zirconia based fixed dental prostheses fabricated with different concepts. Clin. Cosmet. Investig. Dent. 2010, 2, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Euán, R.; Figueras-Álvarez, O.; Cabratosa-Termes, J.; Brufau-de Barberà, M.; Gomes-Azevedo, S. Comparison of the Marginal Adaptation of Zirconium Dioxide Crowns in Preparations with Two Different Finish Lines. J. Prosthodont. 2012, 21, 291–295. [Google Scholar] [CrossRef]
- Grenade, C.; Mainjot, A.; Vanheusden, A. Fit of single tooth zirconia copings: Comparison between various manufacturing processes. J. Prosthet. Dent. 2011, 105, 249–255. [Google Scholar] [CrossRef]
- Oyagüe, R.C.; Sánchez-Jorge, M.I.; Turrión, A.S. Influence of CAD/CAM scanning method and tooth-preparation design on the vertical misfit of zirconia crown copings. Am. J. Dent. 2010, 23, 341–346. [Google Scholar]
- Baig, M.R.; Tan, K.B.-C.; Nicholls, J.I. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J. Prosthet. Dent. 2010, 104, 216–227. [Google Scholar] [CrossRef]
- Song, D.-B.; Han, M.-S.; Kim, S.-C.; Ahn, J.; Im, Y.-W.; Lee, H.-H. Influence of Sequential CAD/CAM Milling on the Fitting Accuracy of Titanium Three-Unit Fixed Dental Prostheses. Materials 2021, 14, 1401. [Google Scholar] [CrossRef] [PubMed]
- Herpel, C.; Tasaka, A.; Higuchi, S.; Finke, D.; Kühle, R.; Odaka, K.; Rues, S.; Lux, C.J.; Yamashita, S.; Rammelsberg, P.; et al. Accuracy of 3D Printing Compared with Milling—A Multi-Center Analysis of Try-In Dentures. J. Dent. 2021, 24, 103681. [Google Scholar] [CrossRef]
System | Mean (µm) | SD | Min (µm) | Max (µm) |
---|---|---|---|---|
A | 84 | 43 | 0 | 285 |
B | 113 | 65 | 0 | 433 |
C | 132 | 71 | 5 | 579 |
D | 101 | 67 | 10 | 427 |
Tooth | (A/B/C/D) | (A/B/C/D) | (A/B/C/D) | (A/B/C/D) |
---|---|---|---|---|
Mean | SD | Min | Max | |
34 | 83/109/141/110 | 45/66/80/74 | 0/0/5/10 | 285/428/579/416 |
35 | 85/125/143/105 | 44/72/69/68 | 0/8/11/10 | 256/433/551/427 |
37 | 85/104/113/88 | 41/55/58/55 | 0/0/8/11 | 223/300/505/339 |
Tooth | (A/B/C/D) | (A/B/C/D) | (A/B/C/D) |
---|---|---|---|
34 | 35 | 37 | |
34 | -/-/-/- | 0.107/<0.001/1.000/<0.001 | 0.125/<0.001/<0.001/<0.001 |
35 | -/-/-/- | 1.000/<0.001/1.000/<0.001 | |
37 | -/-/-/- |
Region | A | B | C | D |
---|---|---|---|---|
Marginal (Q) | 38/7/24/49 | 72/25/42/125 | 64/19/39/99 | 58/27/32/104 |
Axial wall (R) | 76/24/44/117 | 94/40/53/167 | 141/29/95/226 | 75/25/39/135 |
Occlusal area (S) | 132/20/89/165 | 178/29/138/250 | 159/27/105/195 | 182/37/134/269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehmann, K.M.; Weyhrauch, M.; Bjelopavlovic, M.; Scheller, H.; Staedt, H.; Ottl, P.; Kaemmerer, P.W.; Wentaschek, S. Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems. Materials 2021, 14, 2663. https://doi.org/10.3390/ma14102663
Lehmann KM, Weyhrauch M, Bjelopavlovic M, Scheller H, Staedt H, Ottl P, Kaemmerer PW, Wentaschek S. Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems. Materials. 2021; 14(10):2663. https://doi.org/10.3390/ma14102663
Chicago/Turabian StyleLehmann, Karl Martin, Michael Weyhrauch, Monika Bjelopavlovic, Herbert Scheller, Henning Staedt, Peter Ottl, Peer W. Kaemmerer, and Stefan Wentaschek. 2021. "Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems" Materials 14, no. 10: 2663. https://doi.org/10.3390/ma14102663
APA StyleLehmann, K. M., Weyhrauch, M., Bjelopavlovic, M., Scheller, H., Staedt, H., Ottl, P., Kaemmerer, P. W., & Wentaschek, S. (2021). Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems. Materials, 14(10), 2663. https://doi.org/10.3390/ma14102663