Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. DSC Thermograms of Cooled Specimens
3.2. Precipitation in Recrystallized Grains and Sub-Grains
3.3. Effects of Cooling Rates on Tensile Properties
4. Discussion
5. Conclusions
- The influence from the cooling rate during the quenching is evident in 2A97 Al alloys. Precipitation can hardly occur during the water quenching, while the precipitation of T1 and δ′ phase was detected in the air-cooled specimen;
- Quenching precipitation leads to degraded mechanical properties. In comparing the ACA specimen with the WQA specimen, the YS of 2A97 alloy is degraded by 234 MPa and UTS by 156 MPa;
- Sub-grains exhibited much higher sensitivity to quenching precipitation. The presence of dislocations in sub-grains promoted quenching precipitation by acting as nucleation sites and enhancing solutes diffusion;
- The quenching rate of 3 °C/s is tolerable for the recrystallized grains in 2A97 Al alloy but is inadequate for sub-grains to prohibit precipitation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gumbmann, E.; Lefebvre, W.; De Geuser, F.; Sigli, C.; Deschamps, A. The effect of minor solute additions on the precipitation path of an Al Cu Li alloy. Acta Mater. 2016, 115, 104–114. [Google Scholar] [CrossRef]
- Gable, B.M.; Csontos, A.A.; Starke, E.A. A quench sensitivity study on the novel Al–Li–Cu–Xalloy AF/C 458. J. Light Met. 2002, 2, 65–75. [Google Scholar] [CrossRef]
- Wang, X.; Shao, W.Z.; Jiang, J.T.; Li, G.A.; Wang, X.Y.; Zhen, L. Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al–Cu–Li–Mg–Ag alloy. Mater. Sci. Eng. A 2020, 782, 139253. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, G.A.; Jiang, J.T.; Shao, W.Z.; Zhen, L. Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys. Mater. Sci. Eng. A 2019, 742, 138–149. [Google Scholar] [CrossRef]
- Wei, L.; Pan, Q.; Huang, H.; Feng, L.; Wang, Y. Influence of grain structure and crystallographic orientation on fatigue crack propagation behavior of 7050 alloy thick plate. Int. J. Fatigue 2014, 66, 55–64. [Google Scholar] [CrossRef]
- Dolan, G.P.; Robinson, J.S. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis. J. Mater. Process. Technol. 2004, 153–154, 346–351. [Google Scholar] [CrossRef]
- Milkereit, B.; Starink, M.J.; Rometsch, P.A.; Schick, C.; Kessler, O. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials 2019, 12, 4083. [Google Scholar] [CrossRef] [Green Version]
- Jeanmart, P.; Bouvaist, J. Finite element calculation and measurement of thermal stresses in quenched plates of high–strength 7075 aluminium alloy. Mater. Sci. Technol. 1985, 1, 765–769. [Google Scholar] [CrossRef]
- Boyer, J.C.; Boivin, M. Numerical calculations of residual–stress relaxation in quenched plates. Mater. Sci. Technol. 1985, 1, 786–792. [Google Scholar] [CrossRef]
- Robinson, J.S.; Cudd, R.L.; Tanner, D.A.; Dolan, D.G. Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J. Mater. Process. Technol. 2001, 119, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Deschamps, A.; Texier, G.; Ringeval, S.; Delfaut-Durut, L. Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy. Mater. Sci. Eng. A 2009, 501, 133–139. [Google Scholar] [CrossRef]
- Dumont, D.; Deschamps, A.; Bréchet, Y.; Sigli, C.; Ehrström, J.C. Characterisation of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behaviour. Mater. Sci. Technol. 2004, 20, 567–576. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Zhang, Y.; Liu, S.; Jiang, J.; Tang, J.; Ye, L.; Zhang, X. Effect of hot deformation on microstructure and quenching-induced precipitation behavior of Al-Zn-Mg-Cu alloy. Mater. Charact. 2021, 172, 110861–110869. [Google Scholar] [CrossRef]
- Knight, S.P.; Birbilis, N.; Muddle, B.C.; Trueman, A.R.; Lynch, S.P. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys. Corros. Sci. 2010, 52, 4073–4080. [Google Scholar] [CrossRef]
- Song, F.; Zhang, X.; Liu, S.; Tan, Q.; Li, D. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050. Corros. Sci. 2014, 78, 276–286. [Google Scholar] [CrossRef]
- Dumont, D.; Deschamps, A.; Brechet, Y. A model for predicting fracture mode and toughness in 7000 series aluminium alloys. Acta Mater. 2004, 52, 2529–2540. [Google Scholar] [CrossRef]
- Deschamps, A.; Bréchet, Y. Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu Alloy. Scr. Mater. 1998, 39, 1517–1522. [Google Scholar] [CrossRef]
- Zhang, Y.; Weyland, M.; Milkereit, B.; Reich, M.; Rometsch, P.A. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy. Sci. Rep. 2016, 6, 23109–23117. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, Q.; Lin, H.; Sun, L.; Long, T.; Ye, L.; Deng, Y. Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy. Mater. Des. 2017, 132, 119–128. [Google Scholar] [CrossRef]
- Godard, D.; Archambault, P.; Aeby-Gautier, E.; Lapasset, G. Precipitation sequences during quenching of the AA 7010 alloy. Acta Mater. 2002, 50, 2319–2329. [Google Scholar] [CrossRef]
- Valiev, R.; Murashkin, M.Y.; Straumal, B.B. Enhanced Ductility in Ultrafine-Grained Al Alloys Produced by SPD Techniques. Mater. Sci. Forum 2009, 633–634, 321–332. [Google Scholar] [CrossRef]
- Straumal, A.; Mazilkin, I.; Tzoy, K.; Straumal, B.; Bryła, K.; Baranchikov, A.; Eggeler, G. Bulk and Surface Low Temperature Phase Transitions in the Mg-Alloy EZ33A. Metals 2020, 10, 1127. [Google Scholar] [CrossRef]
- Straumal, B.B.; Bokshtein, B.S.; Straumal, A.B.; Petelin, A.L. First observation of a wetting phase transition in low-angle grain boundaries. JETP Lett. 2009, 88, 537–542. [Google Scholar] [CrossRef]
- Prasad, N.E.; Ramachandran, T.R. Phase Diagrams and Phase Reactions in Al–Li Alloys. In Aluminum-Lithium Alloys: Processing, Properties and Applications; Prasad, N.E., Gokhale, A.A., Wanhill, R.J.H., Eds.; Elsevier Inc.: New York, NY, USA, 2014; pp. 61–97. [Google Scholar]
- Jiang, B.; Cao, F.; Wang, H.; Yi, D.; Jiang, Y.; Shen, F.; Wang, B.; Liu, H. Effect of aging time on the microstructure evolution and mechanical property in an Al-Cu-Li alloy sheet. Mater. Sci. Eng. A 2019, 740–741, 157–164. [Google Scholar] [CrossRef]
- Chen, T.R.; Peng, G.J.; Huang, J.C. Low quench sensitivity of superplastic 8090 AI-Li thin sheets. Met. Mater. Trans. A 1996, 27, 2923–2933. [Google Scholar] [CrossRef]
- Luo, A.; Lloyd, D.J.; Gupta, A.; Youdelis, W.V. Precipitation and dissolution kinetics in Al-Li-Cu-Mg alloy 8090. Acta Met. Mater. 1993, 41, 769–776. [Google Scholar] [CrossRef]
- Ghosh, K.S.; Das, K.; Chatterjee, U.K. Kinetics of Solid-State Reactions in Al-Li-Cu-Mg-Zr Alloys from Calorimetric Studies. Metall. Mater. Trans. A 2007, 38, 1965–1975. [Google Scholar] [CrossRef]
- Sidhar, H.; Mishra, R.S. Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg alloys. Mater. Des. 2016, 110, 60–71. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, P.; Sinclair, I.; Gregson, P.J. Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: I. Analysis and Modelling of Microstructural changes. Acta Mater. 1999, 47, 3841–3853. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.S.; Das, K.; Chatterjee, U.K. Calorimetric studies of 8090 and 1441 Al–Li–Cu–Mg–Zr alloys of conventional and retrogressed and reaged tempers. J. Mater. Sci. 2007, 42, 4276–4290. [Google Scholar] [CrossRef]
- Starink, M.J.; Gregson, P.J. S′ and δ′ phase precipitation in SiCp reinforced Al-1.2wt.%Cu-1wt.%Mg-χLi alloys. Mater. Sci. Eng. A 1996, 211, 54–65. [Google Scholar] [CrossRef]
- Gumbmann, E.; De Geuser, F.; Sigli, C.; Deschamps, A. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Mater. 2017, 133, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Qiao, Z.Z.; Feng, Z.H.; Ye, H. Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy: Experiment and BP neural network simulation. T. Nonferr. Met. Soc. China 2013, 23, 1728–1736. [Google Scholar] [CrossRef]
- Jing, Z.; Shen, Z.; Qiao, Z.Z.; Feng, Z.H.; Fu, L.X. Fatigue crack initiation and early propagation behavior of 2A97 Al–Li alloy. T. Nonferr. Met. Soc. China 2014, 24, 303–309. [Google Scholar] [CrossRef]
- Rodgers, B.I.; Prangnell, P.B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195. Acta Mater. 2016, 108, 55–67. [Google Scholar] [CrossRef]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
- Katsikis, S.; Noble, B.; Harris, S.J. Microstructural stability during low temperature exposure of alloys within the Al-Li-Cu-Mg system. Mater. Sci. Eng. A 2008, 485, 613–620. [Google Scholar] [CrossRef]
- Noble, B.; Thompson, G.E. T1 (Al2CuLi) Precipitation in Aluminium–Copper–Lithium Alloys. Met. Sci. J. 1972, 6, 167–174. [Google Scholar] [CrossRef]
- Shakesheff, A.J.; McDarmaid, D.S.; Gregson, P.J. Effects of cooling rate and copper content on the properties of Al-Li-Cu-Mg-Zr alloy 8090. Mater. Lett. 1989, 7, 353–358. [Google Scholar] [CrossRef]
- Baumann, S.F.; Williams, D.B. A new method for the determination of the precipitate-matrix interfacial energy. Scr. Metall. 1984, 18, 611–616. [Google Scholar] [CrossRef]
- Donnadieu, P.; Shao, Y.; De Geuser, F.; Botton, G.A.; Lazar, S.; Cheynet, M.; De Boissieu, M.; Deschamps, A. Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater. 2011, 59, 462–472. [Google Scholar] [CrossRef]
- Cheong, S.; Weiland, H. Understanding a Microstructure Using GOS (Grain Orientation Spread) and Its Application to Recrystallization Study of Hot Deformed Al-Cu-Mg Alloys. Mater. Sci. Forum 2007, 558–559, 153–158. [Google Scholar] [CrossRef]
- Humphreys, G.W.; Jane, R.M. From phenomena to models. Neuropsychol. Rehabil. 1994, 4, 141–142. [Google Scholar] [CrossRef]
- Abolghasem, S.; Basu, S.; Ravi, S.M. Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates. J. Mater. Res. 2013, 28, 2056–2069. [Google Scholar] [CrossRef]
- Alvi, M.H.; Cheong, S.W.; Weiland, H.; Rollett, A.D. Recrystallization and Texture Development in Hot Rolled 1050 Aluminum. Mater. Sci. Forum 2004, 467–470, 357–362. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, Z.; Xie, Y.; Dai, S.; Liu, C. Effects of RRA Treatments on Microstructures and Properties of a New High-strength Aluminum-Lithium Alloy-2A97. Chin. J. Aeronaut. 2007, 20, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Cassada, W.A.; Shiflet, G.J.; Starke, E.A. Mechanism of Al2CuLi (T1) nucleation and growth. Met. Trans. A 1991, 22, 287–297. [Google Scholar] [CrossRef]
- Cassada, W.A.; Shiflet, G.J.; Edgar, S. The effect of plastic deformation on T precipitation. J. Phys. 1987, 48, 397–406. [Google Scholar] [CrossRef]
- Kessler, O.; Bargen, R.; Hoffmann, F.; Zoch, H.W. Continuous Cooling Transformation (CCT) Diagram of Aluminium Alloy Al-4.5Zn-1Mg. Mater. Sci. Forum 2006, 519–521, 1467–1472. [Google Scholar] [CrossRef]
Cu | Li | Mg | Zn | Mn | Zr | Al |
---|---|---|---|---|---|---|
3.55 | 1.40 | 0.44 | 0.46 | 0.29 | 0.11 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jiang, J.; Li, G.; Shao, W.; Zhen, L. Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure. Materials 2021, 14, 2802. https://doi.org/10.3390/ma14112802
Wang X, Jiang J, Li G, Shao W, Zhen L. Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure. Materials. 2021; 14(11):2802. https://doi.org/10.3390/ma14112802
Chicago/Turabian StyleWang, Xiaoya, Jiantang Jiang, Guoai Li, Wenzhu Shao, and Liang Zhen. 2021. "Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure" Materials 14, no. 11: 2802. https://doi.org/10.3390/ma14112802
APA StyleWang, X., Jiang, J., Li, G., Shao, W., & Zhen, L. (2021). Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure. Materials, 14(11), 2802. https://doi.org/10.3390/ma14112802